Theoretical and numerical results about some weakly singular Volterra-Fredholm equations

Authors

  • F. Calió Politecnico di Milano, Italy
  • E. Marchetti Politecnico di Milano, Italy
  • V. Mureșan Technical University of Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat371-872

Keywords:

weakly singular integral equations, fixed points, collocation method
Abstract views: 213

Abstract

In this paper existence, uniqueness results for the solution of some weakly singular linear Volterra and Volterra-Fredholm integral equations are given. For these equations, a numerical model is proposed and its convergence and rate of convergence are analyzed. Numerical results on some polynomial test functions are given.

Downloads

Download data is not yet available.

References

András, Sz., Weakly singular Volterra and Fredholm-Volterra integral equations, Studia Univ. Babeş-Bolyai, Mathematica, 48, no. 3, pp. 147-155, 2003.

András, Sz., Fredholm-Volterra integral equations, EDP, Bucureşti, 2005 (in Romanian).

Anselone, P.M., Nonlinear integral equations, The University of Wisconsin Press, 1964.

Caliò, F., Marchetti, E. and Rabinowitz, P., On the numerical solution of the generalized Prandtl equation using variation-diminishing splines, J. Comput. Appl. Math., 60, pp. 297-307, 1995, https://doi.org/10.1016/0377-0427(94)00024-u DOI: https://doi.org/10.1016/0377-0427(94)00024-U

Chakrabarti, A. and Vanden Berge, G., Numerical solutions of singular integral equations, Elsevier Preprint, 2002.

Dagnino, C., Demichelis, V. and Santi, E., A nodal spline collocation method for weakly singular Volterra integral equations, Studia Univ. "Babeş-Bolyai", 48, no. 3, pp. 71-81, 2003.

Estrada, R. and Kanwal, R.P., Singular integral equations, Birkhauser, 2000. DOI: https://doi.org/10.1007/978-1-4612-1382-6

Ionescu, D.V., Differential and integral equations, EDP, Bucureşti, 1972 (in Romanian).

Lyche, T. and Schumaker, L.L., Local spline approximation methods, J. Approximation Theory, 15, pp. 294-325, 1975, https://doi.org/10.1016/0021-9045(75)90091-x DOI: https://doi.org/10.1016/0021-9045(75)90091-X

Mureşan, V., Existence, uniqueness and data dependence for the solutions of some integro-differential equations of mixed type in Banach space, Journal for Analysis and its Applications, 23, no. 1, pp. 205-216, 2004, https://doi.org/10.4171/zaa/1194 DOI: https://doi.org/10.4171/ZAA/1194

Naroşi, I., A remark on Fredholm-Volterra integral equations, Babeş-Bolyai Univ., Preprint, 3, pp. 21-23, 1986.

Petruşel, A., Fredholm-Volterra integral equations and Maia's theorem, Seminar on Fixed Point Theory, Preprint, 3, pp. 79-82, 1988.

Pogorzelski, W., Integral equations and their applications, Pergamon Press, 1966.

Rabinowitz, P., Numerical integration based on approximating splines, J. Comput. Appl., 33, pp. 73-83, 1990, https://doi.org/10.1016/0377-0427(90)90257-z DOI: https://doi.org/10.1016/0377-0427(90)90257-Z

Scherbakova, A.G., The solvability and properties of solutions of an integral convolutional equation, Buletinul Academiei de Ştiinte a Republicii Moldova, Matematica, 2, no. 51, pp. 87-94, 2006.

Schumaker, A.G., Spline functions: basic theory, Wiley, New York, 1981.

Srivastava, H.M. and Buschman, R.G., Theory and applications of convolution integral equations, Kluwer Academic Publishers, 1992, https://doi.org/10.1007/978-94-015-8092-2 DOI: https://doi.org/10.1007/978-94-015-8092-2

Downloads

Published

2008-02-01

How to Cite

Calió, F., Marchetti, E., & Mureșan, V. (2008). Theoretical and numerical results about some weakly singular Volterra-Fredholm equations. Rev. Anal. Numér. Théor. Approx., 37(1), 27–36. https://doi.org/10.33993/jnaat371-872

Issue

Section

Articles