Return to Article Details Exact orders in simultaneous approximation by complex Bernstein-Stancu polynomials

EXACT ORDERS IN SIMULTANEOUS APPROXIMATION BY COMPLEX BERNSTEIN-STANCU POLYNOMIALS ^(†){ }^{\dagger}

SORIN G. GAL*

Abstract

In this paper the exact orders in approximation by the complex Bernstein-Stancu polynomials (depending on two parameters) and their derivatives on compact disks are obtained.

MSC 2000. Primary: 30E10; Secondary: 41A25, 41A28.
Keywords. Complex Bernstein-Stancu polynomials, exact orders in simultaneous approximation.

1. INTRODUCTION

In the recent paper [1] the following upper estimates and Voronovskaja's theorem in approximation by complex Bernstein-Stancu polynomials depending on two parameters were proved.
Theorem 1.1. Let D R = { z C ; | z | < R } D R = { z C ; | z | < R } D_(R)={z inC;|z| < R}\mathbb{D}_{R}=\{z \in \mathbb{C} ;|z|<R\}DR={zC;|z|<R} be with R > 1 R > 1 R > 1R>1R>1 and let us suppose that f : D R C f : D R C f:D_(R)rarrCf: \mathbb{D}_{R} \rightarrow \mathbb{C}f:DRC is analytic in D R D R D_(R)\mathbb{D}_{R}DR, i.e. f ( z ) = k = 0 c k z k f ( z ) = k = 0 c k z k f(z)=sum_(k=0)^(oo)c_(k)z^(k)f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}f(z)=k=0ckzk, for all z D R z D R z inD_(R)z \in \mathbb{D}_{R}zDR. Also, for 0 α β 0 α β 0 <= alpha <= beta0 \leq \alpha \leq \beta0αβ (independent of n n nnn ) let us define the complex Bernstein-Stancu polynomials by
S n ( α , β ) ( f ) ( z ) = k = 0 n ( n k ) z k ( 1 z ) n k f [ ( k + α ) / ( n + β ) ] , z C S n ( α , β ) ( f ) ( z ) = k = 0 n ( n k ) z k ( 1 z ) n k f [ ( k + α ) / ( n + β ) ] , z C S_(n)^((alpha,beta))(f)(z)=sum_(k=0)^(n)((n)/(k))z^(k)(1-z)^(n-k)f[(k+alpha)//(n+beta)],quad z inCS_{n}^{(\alpha, \beta)}(f)(z)=\sum_{k=0}^{n}\binom{n}{k} z^{k}(1-z)^{n-k} f[(k+\alpha) /(n+\beta)], \quad z \in \mathbb{C}Sn(α,β)(f)(z)=k=0n(nk)zk(1z)nkf[(k+α)/(n+β)],zC
(i) For 1 r < R 1 r < R 1 <= r < R1 \leq r<R1r<R and n N n N n inNn \in \mathbb{N}nN, we have
S n ( α , β ) ( f ) f r M 2 , r ( β ) ( f ) n + β , where 0 < M 2 , r ( β ) ( f ) = 2 r 2 j = 2 j ( j 1 ) | c j | r j 2 + 2 β r j = 1 j | c j | r j 1 < Here f r = sup { | f ( z ) | ; | z | r } S n ( α , β ) ( f ) f r M 2 , r ( β ) ( f ) n + β  where  0 < M 2 , r ( β ) ( f ) = 2 r 2 j = 2 j ( j 1 ) c j r j 2 + 2 β r j = 1 j c j r j 1 <  Here  f r = sup { | f ( z ) | ; | z | r } {:[qquad||S_(n)^((alpha,beta))(f)-f||_(r) <= (M_(2,r)^((beta))(f))/(n+beta)", "],[" where "0 < M_(2,r)^((beta))(f)=2r^(2)sum_(j=2)^(oo)j(j-1)|c_(j)|r^(j-2)+2beta rsum_(j=1)^(oo)j|c_(j)|r^(j-1) < oo],[" Here "||f||_(r)=s u p{|f(z)|;|z| <= r}]:}\begin{aligned} & \qquad\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \leq \frac{M_{2, r}^{(\beta)}(f)}{n+\beta} \text {, } \\ & \text { where } 0<M_{2, r}^{(\beta)}(f)=2 r^{2} \sum_{j=2}^{\infty} j(j-1)\left|c_{j}\right| r^{j-2}+2 \beta r \sum_{j=1}^{\infty} j\left|c_{j}\right| r^{j-1}<\infty \\ & \text { Here }\|f\|_{r}=\sup \{|f(z)| ;|z| \leq r\} \end{aligned}Sn(α,β)(f)frM2,r(β)(f)n+β where 0<M2,r(β)(f)=2r2j=2j(j1)|cj|rj2+2βrj=1j|cj|rj1< Here fr=sup{|f(z)|;|z|r}
(ii) If 1 r < r 1 < R 1 r < r 1 < R 1 <= r < r_(1) < R1 \leq r<r_{1}<R1r<r1<R, then for all n , p N n , p N n,p inNn, p \in \mathbb{N}n,pN, we have
[ S n ( α , β ) ( f ) ] ( p ) f ( p ) r M 2 , r 1 ( β ) ( f ) p ! r 1 ( n + β ) ( r 1 r ) p + 1 S n ( α , β ) ( f ) ( p ) f ( p ) r M 2 , r 1 ( β ) ( f ) p ! r 1 ( n + β ) r 1 r p + 1 ||[S_(n)^((alpha,beta))(f)]^((p))-f^((p))||_(r) <= (M_(2,r_(1))^((beta))(f)p!r_(1))/((n+beta)(r_(1)-r)^(p+1))\left\|\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}-f^{(p)}\right\|_{r} \leq \frac{M_{2, r_{1}}^{(\beta)}(f) p!r_{1}}{(n+\beta)\left(r_{1}-r\right)^{p+1}}[Sn(α,β)(f)](p)f(p)rM2,r1(β)(f)p!r1(n+β)(r1r)p+1
(iii) For all n N n N n inNn \in \mathbb{N}nN, we have
S n ( α , β ) ( f ) f + β e 1 α n + β f n e 1 ( 1 e 1 ) 2 ( n + β ) 2 f 1 M 1 ( α , β ) ( f ) ( n + β ) 2 S n ( α , β ) ( f ) f + β e 1 α n + β f n e 1 1 e 1 2 ( n + β ) 2 f 1 M 1 ( α , β ) ( f ) ( n + β ) 2 ||S_(n)^((alpha,beta))(f)-f+(betae_(1)-alpha)/(n+beta)f^(')-(ne_(1)(1-e_(1)))/(2(n+beta)^(2))f^('')||_(1) <= (M_(1)^((alpha,beta))(f))/((n+beta)^(2))\left\|S_{n}^{(\alpha, \beta)}(f)-f+\frac{\beta e_{1}-\alpha}{n+\beta} f^{\prime}-\frac{n e_{1}\left(1-e_{1}\right)}{2(n+\beta)^{2}} f^{\prime \prime}\right\|_{1} \leq \frac{M_{1}^{(\alpha, \beta)}(f)}{(n+\beta)^{2}}Sn(α,β)(f)f+βe1αn+βfne1(1e1)2(n+β)2f1M1(α,β)(f)(n+β)2
where e 1 ( z ) = z e 1 ( z ) = z e_(1)(z)=ze_{1}(z)=ze1(z)=z and 0 < M 1 ( α , β ) ( f ) < 0 < M 1 ( α , β ) ( f ) < 0 < M_(1)^((alpha,beta))(f) < oo0<M_{1}^{(\alpha, \beta)}(f)<\infty0<M1(α,β)(f)< depends only on α , β α , β alpha,beta\alpha, \betaα,β and f f fff.
Remark 1.2. Following exactly the lines in the proof of Theorem 1.1, (iii) in [1], it is immediate that in fact for any 1 r < R 1 r < R 1 <= r < R1 \leq r<R1r<R we have an upper estimate of the form
S n ( α , β ) ( f ) f + β e 1 α n + β f n e 1 ( 1 e 1 ) 2 ( n + β ) 2 f r M r ( α , β ) ( f ) ( n + β ) 2 S n ( α , β ) ( f ) f + β e 1 α n + β f n e 1 1 e 1 2 ( n + β ) 2 f r M r ( α , β ) ( f ) ( n + β ) 2 ||S_(n)^((alpha,beta))(f)-f+(betae_(1)-alpha)/(n+beta)f^(')-(ne_(1)(1-e_(1)))/(2(n+beta)^(2))f^('')||_(r) <= (M_(r)^((alpha,beta))(f))/((n+beta)^(2))\left\|S_{n}^{(\alpha, \beta)}(f)-f+\frac{\beta e_{1}-\alpha}{n+\beta} f^{\prime}-\frac{n e_{1}\left(1-e_{1}\right)}{2(n+\beta)^{2}} f^{\prime \prime}\right\|_{r} \leq \frac{M_{r}^{(\alpha, \beta)}(f)}{(n+\beta)^{2}}Sn(α,β)(f)f+βe1αn+βfne1(1e1)2(n+β)2frMr(α,β)(f)(n+β)2
where the constant M r ( α , β ) ( f ) > 0 M r ( α , β ) ( f ) > 0 M_(r)^((alpha,beta))(f) > 0M_{r}^{(\alpha, \beta)}(f)>0Mr(α,β)(f)>0 is independent of n n nnn and depends on f , r , α f , r , α f,r,alphaf, r, \alphaf,r,α and β β beta\betaβ. This estimate will be useful in Section 3.
The goal of this paper is to show that in Theorem 1.1, (i) and (ii), also lower estimates hold. Thus, in Section 2 we prove that if the analytic function f f fff is not a polynomial of degree 0 0 <= 0\leq 00 and 1 r < R 1 r < R 1 <= r < R1 \leq r<R1r<R, then we have S n ( α , β ) ( f ) f r C r ( α , β ) ( f ) n , n N S n ( α , β ) ( f ) f r C r ( α , β ) ( f ) n , n N ||S_(n)^((alpha,beta))(f)-f||_(r) >= (C_(r)^((alpha,beta))(f))/(n),n inN\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \geq \frac{C_{r}^{(\alpha, \beta)}(f)}{n}, n \in \mathbb{N}Sn(α,β)(f)frCr(α,β)(f)n,nN, that is in Theorem 1.1, (i), in fact the equivalence S n ( α , β ) ( f ) f r 1 n S n ( α , β ) ( f ) f r 1 n ||S_(n)^((alpha,beta))(f)-f||_(r)∼(1)/(n)\| S_{n}^{(\alpha, \beta)}(f)- f \|_{r} \sim \frac{1}{n}Sn(α,β)(f)fr1n holds. In Section 3 we prove that for any p N p N p inNp \in \mathbb{N}pN and 1 r < R 1 r < R 1 <= r < R1 \leq r<R1r<R, if f f fff is not a polynomial of degree p 1 p 1 <= p-1\leq p-1p1 then we have [ S n ( α , β ) ( f ) ] ( p ) f ( p ) r 1 n S n ( α , β ) ( f ) ( p ) f ( p ) r 1 n ||[S_(n)^((alpha,beta))(f)]^((p))-f^((p))||_(r)∼(1)/(n)\left\|\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}-f^{(p)}\right\|_{r} \sim \frac{1}{n}[Sn(α,β)(f)](p)f(p)r1n, where the constants in the equivalence depend only on f , α , β , r f , α , β , r f,alpha,beta,rf, \alpha, \beta, rf,α,β,r and p p ppp.
Since the case α = β = 0 α = β = 0 alpha=beta=0\alpha=\beta=0α=β=0 (i.e. the case of classical Bernstein polynomials) was already considered in [2], in the rest of the paper we will exclude it.

2. EXACT ORDER OF APPROXIMATION FOR COMPLEX BERNSTEIN-STANCU POLYNOMIALS

The main result of this section is the following.
Theorem 2.1. Let R > 1 , 0 α β R > 1 , 0 α β R > 1,0 <= alpha <= betaR>1,0 \leq \alpha \leq \betaR>1,0αβ with α + β > 0 , D R = { z C ; | z | < R } α + β > 0 , D R = { z C ; | z | < R } alpha+beta > 0,D_(R)={z inC;|z| < R}\alpha+\beta>0, \mathbb{D}_{R}=\{z \in \mathbb{C} ;|z|<R\}α+β>0,DR={zC;|z|<R} and let us suppose that f : D R C f : D R C f:D_(R)rarrCf: \mathbb{D}_{R} \rightarrow \mathbb{C}f:DRC is analytic in D R D R D_(R)\mathbb{D}_{R}DR, that is we can write f ( z ) = k = 0 c k z k f ( z ) = k = 0 c k z k f(z)=sum_(k=0)^(oo)c_(k)z^(k)f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}f(z)=k=0ckzk, for all z D R z D R z inD_(R)z \in \mathbb{D}_{R}zDR. If f f fff is not a polynomial of degree 0 and 1 r < R 1 r < R 1 <= r < R1 \leq r<R1r<R, then we have
S n ( α , β ) ( f ) f r C r ( α , β ) ( f ) n + β , n N S n ( α , β ) ( f ) f r C r ( α , β ) ( f ) n + β , n N ||S_(n)^((alpha,beta))(f)-f||_(r) >= (C_(r)^((alpha,beta))(f))/(n+beta),n inN\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \geq \frac{C_{r}^{(\alpha, \beta)}(f)}{n+\beta}, n \in \mathbb{N}Sn(α,β)(f)frCr(α,β)(f)n+β,nN
where the constant C r ( α , β ) ( f ) C r ( α , β ) ( f ) C_(r)^((alpha,beta))(f)C_{r}^{(\alpha, \beta)}(f)Cr(α,β)(f) depends only on f , r , α f , r , α f,r,alphaf, r, \alphaf,r,α and β β beta\betaβ.
Proof. For all z D R z D R z inD_(R)z \in \mathbb{D}_{R}zDR and n N n N n inNn \in \mathbb{N}nN we have
S n ( α , β ) ( f ) ( z ) f ( z ) = 1 n + β { ( β z α ) f ( z ) + z ( 1 z ) 2 f ( z ) + 1 n + β [ ( n + β ) 2 ( S n ( α , β ) ( f ) ( z ) f ( z ) + β z α n + β f ( z ) n z ( 1 z ) 2 ( n + β ) 2 f ( z ) ) β z ( 1 z ) 2 f ( z ) ] } . S n ( α , β ) ( f ) ( z ) f ( z ) = 1 n + β ( β z α ) f ( z ) + z ( 1 z ) 2 f ( z ) + 1 n + β ( n + β ) 2 S n ( α , β ) ( f ) ( z ) f ( z ) + β z α n + β f ( z ) n z ( 1 z ) 2 ( n + β ) 2 f ( z ) β z ( 1 z ) 2 f ( z ) . {:[S_(n)^((alpha,beta))(f)(z)-f(z)=(1)/(n+beta){-(beta z-alpha)f^(')(z)+(z(1-z))/(2)f^('')(z)+(1)/(n+beta)*:}],[{: quad*[(n+beta)^(2)(S_(n)^((alpha,beta))(f)(z)-f(z)+(beta z-alpha)/(n+beta)f^(')(z)-(nz(1-z))/(2(n+beta)^(2))f^('')(z))-(beta z(1-z))/(2)f^('')(z)]}.]:}\begin{aligned} & S_{n}^{(\alpha, \beta)}(f)(z)-f(z)=\frac{1}{n+\beta}\left\{-(\beta z-\alpha) f^{\prime}(z)+\frac{z(1-z)}{2} f^{\prime \prime}(z)+\frac{1}{n+\beta} \cdot\right. \\ & \left.\quad \cdot\left[(n+\beta)^{2}\left(S_{n}^{(\alpha, \beta)}(f)(z)-f(z)+\frac{\beta z-\alpha}{n+\beta} f^{\prime}(z)-\frac{n z(1-z)}{2(n+\beta)^{2}} f^{\prime \prime}(z)\right)-\frac{\beta z(1-z)}{2} f^{\prime \prime}(z)\right]\right\} . \end{aligned}Sn(α,β)(f)(z)f(z)=1n+β{(βzα)f(z)+z(1z)2f(z)+1n+β[(n+β)2(Sn(α,β)(f)(z)f(z)+βzαn+βf(z)nz(1z)2(n+β)2f(z))βz(1z)2f(z)]}.
Note that in the case α = β = 0 α = β = 0 alpha=beta=0\alpha=\beta=0α=β=0 in [2], necessarily f f fff was supposed to be not a polynomial of degree 1 1 <= 1\leq 11.
In what follows we will apply to the above identity the following obvious property:
F + G r | F r G r | F r G r F + G r F r G r F r G r ||F+G||_(r) >= |||F||_(r)-||G||_(r)| >= ||F||_(r)-||G||_(r)\|F+G\|_{r} \geq\left|\|F\|_{r}-\|G\|_{r}\right| \geq\|F\|_{r}-\|G\|_{r}F+Gr|FrGr|FrGr
It follows
S n ( α , β ) ( f ) f r 1 n + β { ( β e 1 α ) f + e 1 ( 1 e 1 ) 2 f r 1 n + β [ ( n + β ) 2 ( S n ( α , β ) ( f ) f + β e 1 α n + β f n e 1 ( 1 e 1 ) 2 ( n + β ) 2 f ) β e 1 ( 1 e 1 ) 2 f r ] } . S n ( α , β ) ( f ) f r 1 n + β β e 1 α f + e 1 1 e 1 2 f r 1 n + β ( n + β ) 2 S n ( α , β ) ( f ) f + β e 1 α n + β f n e 1 1 e 1 2 ( n + β ) 2 f β e 1 1 e 1 2 f r . {:[||S_(n)^((alpha,beta))(f)-f||_(r) >= (1)/(n+beta){||-(betae_(1)-alpha)f^(')+(e_(1)(1-e_(1)))/(2)f^('')||_(r)-(1)/(n+beta)*:}],[{: quad*[||(n+beta)^(2)(S_(n)^((alpha,beta))(f)-f+(betae_(1)-alpha)/(n+beta)f^(')-(ne_(1)(1-e_(1)))/(2(n+beta)^(2))f^(''))-(betae_(1)(1-e_(1)))/(2)f^('')||_(r)]}.]:}\begin{aligned} & \left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \geq \frac{1}{n+\beta}\left\{\left\|-\left(\beta e_{1}-\alpha\right) f^{\prime}+\frac{e_{1}\left(1-e_{1}\right)}{2} f^{\prime \prime}\right\|_{r}-\frac{1}{n+\beta} \cdot\right. \\ & \left.\quad \cdot\left[\left\|(n+\beta)^{2}\left(S_{n}^{(\alpha, \beta)}(f)-f+\frac{\beta e_{1}-\alpha}{n+\beta} f^{\prime}-\frac{n e_{1}\left(1-e_{1}\right)}{2(n+\beta)^{2}} f^{\prime \prime}\right)-\frac{\beta e_{1}\left(1-e_{1}\right)}{2} f^{\prime \prime}\right\|_{r}\right]\right\} . \end{aligned}Sn(α,β)(f)fr1n+β{(βe1α)f+e1(1e1)2fr1n+β[(n+β)2(Sn(α,β)(f)f+βe1αn+βfne1(1e1)2(n+β)2f)βe1(1e1)2fr]}.
Since by Remark 1.2 we have
( n + β ) 2 ( S n ( α , β ) ( f ) f + β e 1 α n + β f n e 1 ( 1 e 1 ) 2 ( n + β ) 2 f ) β e 1 ( 1 e 1 ) 2 f r M r ( α , β ) ( f ) + β f r ( n + β ) 2 S n ( α , β ) ( f ) f + β e 1 α n + β f n e 1 1 e 1 2 ( n + β ) 2 f β e 1 1 e 1 2 f r M r ( α , β ) ( f ) + β f r {:[||(n+beta)^(2)(S_(n)^((alpha,beta))(f)-f+(betae_(1)-alpha)/(n+beta)f^(')-(ne_(1)(1-e_(1)))/(2(n+beta)^(2))f^(''))-(betae_(1)(1-e_(1)))/(2)f^('')||_(r) <= ],[ <= M_(r)^((alpha,beta))(f)+beta||f^('')||_(r)]:}\begin{gathered} \left\|(n+\beta)^{2}\left(S_{n}^{(\alpha, \beta)}(f)-f+\frac{\beta e_{1}-\alpha}{n+\beta} f^{\prime}-\frac{n e_{1}\left(1-e_{1}\right)}{2(n+\beta)^{2}} f^{\prime \prime}\right)-\frac{\beta e_{1}\left(1-e_{1}\right)}{2} f^{\prime \prime}\right\|_{r} \leq \\ \leq M_{r}^{(\alpha, \beta)}(f)+\beta\left\|f^{\prime \prime}\right\|_{r} \end{gathered}(n+β)2(Sn(α,β)(f)f+βe1αn+βfne1(1e1)2(n+β)2f)βe1(1e1)2frMr(α,β)(f)+βfr
and denoting H ( z ) = ( β z α ) f ( z ) + z ( 1 z ) 2 f ( z ) H ( z ) = ( β z α ) f ( z ) + z ( 1 z ) 2 f ( z ) H(z)=-(beta z-alpha)f^(')(z)+(z(1-z))/(2)f^('')(z)H(z)=-(\beta z-\alpha) f^{\prime}(z)+\frac{z(1-z)}{2} f^{\prime \prime}(z)H(z)=(βzα)f(z)+z(1z)2f(z), if we prove that H r > 0 H r > 0 ||H||_(r) > 0\|H\|_{r}>0Hr>0, then it is clear that there exists an index n 0 n 0 n_(0)n_{0}n0 depending only on f , α f , α f,alphaf, \alphaf,α and β β beta\betaβ, such that
S n ( α , β ) ( f ) f r 1 n + β H r 2 , n n 0 S n ( α , β ) ( f ) f r 1 n + β H r 2 , n n 0 ||S_(n)^((alpha,beta))(f)-f||_(r) >= (1)/(n+beta)*(||H||_(r))/(2),AA n >= n_(0)\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \geq \frac{1}{n+\beta} \cdot \frac{\|H\|_{r}}{2}, \forall n \geq n_{0}Sn(α,β)(f)fr1n+βHr2,nn0
For n { 1 , 2 , , n 0 1 } n 1 , 2 , , n 0 1 n in{1,2,dots,n_(0)-1}n \in\left\{1,2, \ldots, n_{0}-1\right\}n{1,2,,n01} we have S n ( α , β ) ( f ) f r A n , r ( α , β ) ( f ) n + β S n ( α , β ) ( f ) f r A n , r ( α , β ) ( f ) n + β ||S_(n)^((alpha,beta))(f)-f||_(r) >= (A_(n,r)^((alpha,beta))(f))/(n+beta)\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \geq \frac{A_{n, r}^{(\alpha, \beta)}(f)}{n+\beta}Sn(α,β)(f)frAn,r(α,β)(f)n+β with A n , r ( α , β ) ( f ) = ( n + β ) S n ( α , β ) ( f ) f r > 0 A n , r ( α , β ) ( f ) = ( n + β ) S n ( α , β ) ( f ) f r > 0 A_(n,r)^((alpha,beta))(f)=(n+beta)*||S_(n)^((alpha,beta))(f)-f||_(r) > 0A_{n, r}^{(\alpha, \beta)}(f)= (n+\beta) \cdot\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r}>0An,r(α,β)(f)=(n+β)Sn(α,β)(f)fr>0, which finally implies S n ( α , β ) ( f ) f r C r ( α , β ) ( f ) n + β S n ( α , β ) ( f ) f r C r ( α , β ) ( f ) n + β ||S_(n)^((alpha,beta))(f)-f||_(r) >= (C_(r)^((alpha,beta))(f))/(n+beta)\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \geq \frac{C_{r}^{(\alpha, \beta)}(f)}{n+\beta}Sn(α,β)(f)frCr(α,β)(f)n+β for all n N n N n inNn \in \mathbb{N}nN, with C r ( α , β ) ( f ) = min { A 1 , r ( α , β ) , A 2 , r ( α , β ) ( f ) , , A n 0 1 , r ( α , β ) ( f ) , H r 2 } C r ( α , β ) ( f ) = min A 1 , r ( α , β ) , A 2 , r ( α , β ) ( f ) , , A n 0 1 , r ( α , β ) ( f ) , H r 2 C_(r)^((alpha,beta))(f)=min{A_(1,r)^((alpha,beta)),A_(2,r)^((alpha,beta))(f),dots,A_(n_(0)-1,r)^((alpha,beta))(f),(||H||_(r))/(2)}C_{r}^{(\alpha, \beta)}(f)=\min \left\{A_{1, r}^{(\alpha, \beta)}, A_{2, r}^{(\alpha, \beta)}(f), \ldots, A_{n_{0}-1, r}^{(\alpha, \beta)}(f), \frac{\|H\|_{r}}{2}\right\}Cr(α,β)(f)=min{A1,r(α,β),A2,r(α,β)(f),,An01,r(α,β)(f),Hr2}.
Therefore it remains to show that H r > 0 H r > 0 ||H||_(r) > 0\|H\|_{r}>0Hr>0. Indeed, suppose that H r = H r = ||H||_(r)=\|H\|_{r}=Hr= 0 . We have two possibilities: 1) 0 = α < β 0 = α < β 0=alpha < beta0=\alpha<\beta0=α<β or 2) 0 < α β 0 < α β 0 < alpha <= beta0<\alpha \leq \beta0<αβ.
Case 1). We obtain H ( z ) = β z f ( z ) + z ( 1 z ) 2 f ( z ) = 0 H ( z ) = β z f ( z ) + z ( 1 z ) 2 f ( z ) = 0 H(z)=-beta zf^(')(z)+(z(1-z))/(2)f^('')(z)=0H(z)=-\beta z f^{\prime}(z)+\frac{z(1-z)}{2} f^{\prime \prime}(z)=0H(z)=βzf(z)+z(1z)2f(z)=0, for all | z | r | z | r |z| <= r|z| \leq r|z|r and denoting y ( z ) = f ( z ) y ( z ) = f ( z ) y(z)=f^(')(z)y(z)=f^{\prime}(z)y(z)=f(z), it follows that y ( z ) y ( z ) y(z)y(z)y(z) is an analytic function in D R D R D_(R)\mathbb{D}_{R}DR, solution of the differential equation β z y ( z ) + z ( 1 z ) 2 y ( z ) = 0 , | z | r β z y ( z ) + z ( 1 z ) 2 y ( z ) = 0 , | z | r -beta zy(z)+(z(1-z))/(2)y^(')(z)=0,|z| <= r-\beta z y(z)+\frac{z(1-z)}{2} y^{\prime}(z)=0,|z| \leq rβzy(z)+z(1z)2y(z)=0,|z|r, which after simplification with z 0 z 0 z!=0z \neq 0z0 becomes β y ( z ) + ( 1 z ) 2 y ( z ) = 0 , | z | r β y ( z ) + ( 1 z ) 2 y ( z ) = 0 , | z | r -beta y(z)+((1-z))/(2)y^(')(z)=0,|z| <= r-\beta y(z)+\frac{(1-z)}{2} y^{\prime}(z)=0,|z| \leq rβy(z)+(1z)2y(z)=0,|z|r. Now, seeking y ( z ) y ( z ) y(z)y(z)y(z) in the form y ( z ) = k = 0 b k z k y ( z ) = k = 0 b k z k y(z)=sum_(k=0)^(oo)b_(k)z^(k)y(z)=\sum_{k=0}^{\infty} b_{k} z^{k}y(z)=k=0bkzk and replacing it in the differential equation, by the identification of the coefficients we easily obtain b k = 0 b k = 0 b_(k)=0b_{k}=0bk=0 for all k = 0 , 1 , k = 0 , 1 , k=0,1,dotsk=0,1, \ldotsk=0,1,. Therefore y ( z ) = 0 y ( z ) = 0 y(z)=0y(z)=0y(z)=0 for all | z | r | z | r |z| <= r|z| \leq r|z|r, which by the identity theorem on analytic (holomorphic) functions implies y ( z ) = 0 y ( z ) = 0 y(z)=0y(z)=0y(z)=0 for all z D R z D R z inD_(R)z \in \mathbb{D}_{R}zDR and the contradiction that f f fff is a polynomial of degree 0 0 <= 0\leq 00.
Case 2). Denoting y ( z ) = f ( z ) y ( z ) = f ( z ) y(z)=f^(')(z)y(z)=f^{\prime}(z)y(z)=f(z) by hypothesis it follows that y ( z ) y ( z ) y(z)y(z)y(z) is an analytic function in D R D R D_(R)\mathbb{D}_{R}DR solution of the differential equation ( β z + α ) y ( z ) + z ( 1 z ) 2 y ( z ) = 0 , | z | r ( β z + α ) y ( z ) + z ( 1 z ) 2 y ( z ) = 0 , | z | r (-beta z+alpha)y(z)+(z(1-z))/(2)y^(')(z)=0,|z| <= r(-\beta z+\alpha) y(z)+ \frac{z(1-z)}{2} y^{\prime}(z)=0,|z| \leq r(βz+α)y(z)+z(1z)2y(z)=0,|z|r.
Taking z = 0 z = 0 z=0z=0z=0 it follows α y ( 0 ) = 0 α y ( 0 ) = 0 alpha y(0)=0\alpha y(0)=0αy(0)=0, which means y ( 0 ) = 0 y ( 0 ) = 0 y(0)=0y(0)=0y(0)=0. Seeking y ( z ) y ( z ) y(z)y(z)y(z) in the form y ( z ) = k = 1 b k z k y ( z ) = k = 1 b k z k y(z)=sum_(k=1)^(oo)b_(k)z^(k)y(z)=\sum_{k=1}^{\infty} b_{k} z^{k}y(z)=k=1bkzk and replacing it in the differential equation, by the
identification of the coefficients we easily obtain b k = 0 b k = 0 b_(k)=0b_{k}=0bk=0 for all k = 1 , 2 , k = 1 , 2 , k=1,2,dotsk=1,2, \ldotsk=1,2,, which finally leads to the contradiction that f f fff is a constant.
Combining now Theorem 2.1 with Theorem 1.1, (i), we immediately get the following.
Corollary 2.2. Let R > 1 , 0 α β R > 1 , 0 α β R > 1,0 <= alpha <= betaR>1,0 \leq \alpha \leq \betaR>1,0αβ with α + β > 0 , D R = { z C ; | z | < R } α + β > 0 , D R = { z C ; | z | < R } alpha+beta > 0,D_(R)={z inC;|z| < R}\alpha+\beta>0, \mathbb{D}_{R}=\{z \in \mathbb{C} ;|z|<R\}α+β>0,DR={zC;|z|<R} and let us suppose that f : D R C f : D R C f:D_(R)rarrCf: \mathbb{D}_{R} \rightarrow \mathbb{C}f:DRC is analytic in D R D R D_(R)\mathbb{D}_{R}DR. If f f fff is not a polynomial of degree 0 and 1 r < R 1 r < R 1 <= r < R1 \leq r<R1r<R, then we have
S n ( α , β ) ( f ) f r 1 n + β , n N S n ( α , β ) ( f ) f r 1 n + β , n N ||S_(n)^((alpha,beta))(f)-f||_(r)∼(1)/(n+beta),n inN\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r} \sim \frac{1}{n+\beta}, n \in \mathbb{N}Sn(α,β)(f)fr1n+β,nN
where the constants in the equivalence depend on f , r , α f , r , α f,r,alphaf, r, \alphaf,r,α and β β beta\betaβ.

3. EXACT ORDERS OF APPROXIMATION FOR DERIVATIVES OF COMPLEX BERNSTEIN-STANCU POLYNOMIALS

The main result of this section is the following.
Theorem 3.1. Let D R = { z C ; | z | < R } D R = { z C ; | z | < R } D_(R)={z inC;|z| < R}\mathbb{D}_{R}=\{z \in \mathbb{C} ;|z|<R\}DR={zC;|z|<R} be with R > 1 , 0 α β R > 1 , 0 α β R > 1,0 <= alpha <= betaR>1,0 \leq \alpha \leq \betaR>1,0αβ with α + β > 0 α + β > 0 alpha+beta > 0\alpha+\beta>0α+β>0 and let us suppose that f : D R C f : D R C f:D_(R)rarrCf: \mathbb{D}_{R} \rightarrow \mathbb{C}f:DRC is analytic in D R D R D_(R)\mathbb{D}_{R}DR, i.e. f ( z ) = k = 0 c k z k f ( z ) = k = 0 c k z k f(z)=sum_(k=0)^(oo)c_(k)z^(k)f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}f(z)=k=0ckzk, for all z D R z D R z inD_(R)z \in \mathbb{D}_{R}zDR. Also, let 1 r < r 1 < R 1 r < r 1 < R 1 <= r < r_(1) < R1 \leq r<r_{1}<R1r<r1<R and p N p N p inNp \in \mathbb{N}pN be fixed. If f f fff is not a polynomial of degree p 1 p 1 <= p-1\leq p-1p1, then we have
[ S n ( α , β ) ( f ) ] ( p ) f ( p ) r 1 n + β S n ( α , β ) ( f ) ( p ) f ( p ) r 1 n + β ||[S_(n)^((alpha,beta))(f)]^((p))-f^((p))||_(r)∼(1)/(n+beta)\left\|\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}-f^{(p)}\right\|_{r} \sim \frac{1}{n+\beta}[Sn(α,β)(f)](p)f(p)r1n+β
where the constants in the equivalence depend on f , α , β , r , r 1 f , α , β , r , r 1 f,alpha,beta,r,r_(1)f, \alpha, \beta, r, r_{1}f,α,β,r,r1 and p p ppp.
Proof. Taking into account Theorem 1.1, (ii), it remains only to prove the lower estimate for [ S n ( α , β ) ( f ) ] ( p ) f ( p ) r S n ( α , β ) ( f ) ( p ) f ( p ) r ||[S_(n)^((alpha,beta))(f)]^((p))-f^((p))||_(r)\left\|\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}-f^{(p)}\right\|_{r}[Sn(α,β)(f)](p)f(p)r.
Denoting by Γ Γ Gamma\GammaΓ the circle of radius r 1 > r r 1 > r r_(1) > rr_{1}>rr1>r (with r 1 r 1 r >= 1r \geq 1r1 ) and center 0 , by the Cauchy's formulas it follows that for all | z | r | z | r |z| <= r|z| \leq r|z|r and n N n N n inNn \in \mathbb{N}nN we have
[ S n ( α , β ) ( f ) ] ( p ) ( z ) f ( p ) ( z ) = p ! 2 π i Γ S n ( α , β ) ( f ) ( v ) f ( v ) ( v z ) p + 1 d v S n ( α , β ) ( f ) ( p ) ( z ) f ( p ) ( z ) = p ! 2 π i Γ S n ( α , β ) ( f ) ( v ) f ( v ) ( v z ) p + 1 d v [S_(n)^((alpha,beta))(f)]^((p))(z)-f^((p))(z)=(p!)/(2pii)int_(Gamma)(S_(n)^((alpha,beta))(f)(v)-f(v))/((v-z)^(p+1))dv\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}(z)-f^{(p)}(z)=\frac{p!}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{S_{n}^{(\alpha, \beta)}(f)(v)-f(v)}{(v-z)^{p+1}} \mathrm{~d} v[Sn(α,β)(f)](p)(z)f(p)(z)=p!2πiΓSn(α,β)(f)(v)f(v)(vz)p+1 dv
where we have the inequality | v z | r 1 r | v z | r 1 r |v-z| >= r_(1)-r|v-z| \geq r_{1}-r|vz|r1r valid for all | z | r | z | r |z| <= r|z| \leq r|z|r and v Γ v Γ v in Gammav \in \GammavΓ.
As in the proof of Theorem 2.1 (keeping the notation for H H HHH ), for all v Γ v Γ v in Gammav \in \GammavΓ and n N n N n inNn \in \mathbb{N}nN we have
S n ( α , β ) ( f ) ( v ) f ( v ) = = 1 n + β { H ( v ) + 1 n + β [ ( n + β ) 2 ( S n ( α , β ) ( f ) ( v ) f ( v ) + β v α n + β f ( v ) n v ( 1 v ) 2 ( n + β ) 2 f ( v ) ) β v ( 1 v ) 2 f ( v ) ] } S n ( α , β ) ( f ) ( v ) f ( v ) = = 1 n + β H ( v ) + 1 n + β ( n + β ) 2 S n ( α , β ) ( f ) ( v ) f ( v ) + β v α n + β f ( v ) n v ( 1 v ) 2 ( n + β ) 2 f ( v ) β v ( 1 v ) 2 f ( v ) {:[S_(n)^((alpha,beta))(f)(v)-f(v)=],[=(1)/(n+beta){H(v)+(1)/(n+beta)[(n+beta)^(2)(S_(n)^((alpha,beta))(f)(v)-f(v)+:}],[{: quad(beta v-alpha)/(n+beta)f^(')(v)-(nv(1-v))/(2(n+beta)^(2))f^('')(v))-(beta v(1-v))/(2)f^('')(v)]}]:}\begin{aligned} & S_{n}^{(\alpha, \beta)}(f)(v)-f(v)= \\ & =\frac{1}{n+\beta}\left\{H(v)+\frac{1}{n+\beta}\left[( n + \beta ) ^ { 2 } \left(S_{n}^{(\alpha, \beta)}(f)(v)-f(v)+\right.\right.\right. \\ & \left.\left.\left.\quad \frac{\beta v-\alpha}{n+\beta} f^{\prime}(v)-\frac{n v(1-v)}{2(n+\beta)^{2}} f^{\prime \prime}(v)\right)-\frac{\beta v(1-v)}{2} f^{\prime \prime}(v)\right]\right\} \end{aligned}Sn(α,β)(f)(v)f(v)==1n+β{H(v)+1n+β[(n+β)2(Sn(α,β)(f)(v)f(v)+βvαn+βf(v)nv(1v)2(n+β)2f(v))βv(1v)2f(v)]}
which replaced in the above Cauchy's formula implies
[ S n ( α , β ) ( f ) ] ( p ) ( z ) f ( p ) ( z ) = 1 n + β { H ( p ) ( z ) + 1 n + β [ p ! 2 π i Γ ( n + β ) 2 ( S n ( α , β ) ( f ) ( v ) f ( v ) + β v α n + β f ( v ) n v ( 1 v ) 2 ( n + β ) 2 f ( v ) ) ( v z ) p + 1 d v p ! 2 π i Γ β v ( 1 v ) 2 ( v z ) p + 1 f ( v ) d v ] } S n ( α , β ) ( f ) ( p ) ( z ) f ( p ) ( z ) = 1 n + β H ( p ) ( z ) + 1 n + β p ! 2 π i Γ ( n + β ) 2 S n ( α , β ) ( f ) ( v ) f ( v ) + β v α n + β f ( v ) n v ( 1 v ) 2 ( n + β ) 2 f ( v ) ( v z ) p + 1 d v p ! 2 π i Γ β v ( 1 v ) 2 ( v z ) p + 1 f ( v ) d v {:[[S_(n)^((alpha,beta))(f)]^((p))(z)-f^((p))(z)=(1)/(n+beta){H^((p))(z)+(1)/(n+beta):}],[quad*[(p!)/(2pii)int_(Gamma)((n+beta)^(2)(S_(n)^((alpha,beta))(f)(v)-f(v)+(beta v-alpha)/(n+beta)f^(')(v)-(nv(1-v))/(2(n+beta)^(2))f^('')(v)))/((v-z)^(p+1))(d)v-:}],[{: quad-(p!)/(2pii)int_(Gamma)(beta v(1-v))/(2(v-z)^(p+1))f^('')(v)dv]}]:}\begin{aligned} & {\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}(z)-f^{(p)}(z)=\frac{1}{n+\beta}\left\{H^{(p)}(z)+\frac{1}{n+\beta}\right.} \\ & \quad \cdot\left[\frac{p!}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{(n+\beta)^{2}\left(S_{n}^{(\alpha, \beta)}(f)(v)-f(v)+\frac{\beta v-\alpha}{n+\beta} f^{\prime}(v)-\frac{n v(1-v)}{2(n+\beta)^{2}} f^{\prime \prime}(v)\right)}{(v-z)^{p+1}} \mathrm{~d} v-\right. \\ & \left.\left.\quad-\frac{p!}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{\beta v(1-v)}{2(v-z)^{p+1}} f^{\prime \prime}(v) \mathrm{d} v\right]\right\} \end{aligned}[Sn(α,β)(f)](p)(z)f(p)(z)=1n+β{H(p)(z)+1n+β[p!2πiΓ(n+β)2(Sn(α,β)(f)(v)f(v)+βvαn+βf(v)nv(1v)2(n+β)2f(v))(vz)p+1 dvp!2πiΓβv(1v)2(vz)p+1f(v)dv]}
Passing now to absolute value, for all | z | r | z | r |z| <= r|z| \leq r|z|r and n N n N n inNn \in \mathbb{N}nN it follows
| [ S n ( α , β ) ( f ) ] ( p ) ( z ) f ( p ) ( z ) | 1 n + β { | H ( p ) ( z ) | 1 n + β [ | p ! 2 π i Γ ( n + β ) 2 ( S n ( α , β ) ( f ) ( v ) f ( v ) + β v α n + β f ( v ) n v ( 1 v ) 2 ( n + β ) 2 f ( v ) ) ( v z ) p + 1 d v p ! 2 π i Γ β v ( 1 v ) 2 ( v z ) p + 1 f ( v ) d v | ] } S n ( α , β ) ( f ) ( p ) ( z ) f ( p ) ( z ) 1 n + β H ( p ) ( z ) 1 n + β p ! 2 π i Γ ( n + β ) 2 S n ( α , β ) ( f ) ( v ) f ( v ) + β v α n + β f ( v ) n v ( 1 v ) 2 ( n + β ) 2 f ( v ) ( v z ) p + 1 d v p ! 2 π i Γ β v ( 1 v ) 2 ( v z ) p + 1 f ( v ) d v {:[|[S_(n)^((alpha,beta))(f)]^((p))(z)-f^((p))(z)| >= (1)/(n+beta){|H^((p))(z)|-(1)/(n+beta)*:}],[[|(p!)/(2pii)int_(Gamma)((n+beta)^(2)(S_(n)^((alpha,beta))(f)(v)-f(v)+(beta v-alpha)/(n+beta)f^(')(v)-(nv(1-v))/(2(n+beta)^(2))f^('')(v)))/((v-z)^(p+1))(d)v-:}],[{: quad(p!)/(2pii)int_(Gamma)(beta v(1-v))/(2(v-z)^(p+1))f^('')(v)dv|]}]:}\begin{aligned} & \left|\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}(z)-f^{(p)}(z)\right| \geq \frac{1}{n+\beta}\left\{\left|H^{(p)}(z)\right|-\frac{1}{n+\beta} \cdot\right. \\ & {\left[\left\lvert\, \frac{p!}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{(n+\beta)^{2}\left(S_{n}^{(\alpha, \beta)}(f)(v)-f(v)+\frac{\beta v-\alpha}{n+\beta} f^{\prime}(v)-\frac{n v(1-v)}{2(n+\beta)^{2}} f^{\prime \prime}(v)\right)}{(v-z)^{p+1}} \mathrm{~d} v-\right.\right.} \\ & \left.\left.\left.\quad \frac{p!}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{\beta v(1-v)}{2(v-z)^{p+1}} f^{\prime \prime}(v) \mathrm{d} v \right\rvert\,\right]\right\} \end{aligned}|[Sn(α,β)(f)](p)(z)f(p)(z)|1n+β{|H(p)(z)|1n+β[|p!2πiΓ(n+β)2(Sn(α,β)(f)(v)f(v)+βvαn+βf(v)nv(1v)2(n+β)2f(v))(vz)p+1 dvp!2πiΓβv(1v)2(vz)p+1f(v)dv|]}
where by using the Remark 1.2, for all | z | r | z | r |z| <= r|z| \leq r|z|r and n N n N n inNn \in \mathbb{N}nN we get
| p ! 2 π i Γ ( n + β ) 2 ( S n ( α , β ) ( f ) ( v ) f ( v ) + β v α n + β f ( v ) n v ( 1 v ) 2 ( n + β ) 2 f ( v ) ) ( v z ) p + 1 d v p ! 2 π i Γ β v ( 1 v ) 2 ( v z ) p + 1 f ( v ) d v | p ! 2 π 2 π r 1 M r ( α , β ) ( r 1 r ) p + 1 + p ! 2 π 2 π r 1 β r 1 ( 1 + r 1 ) f r 1 2 ( r 1 r ) p + 1 p ! 2 π i Γ ( n + β ) 2 S n ( α , β ) ( f ) ( v ) f ( v ) + β v α n + β f ( v ) n v ( 1 v ) 2 ( n + β ) 2 f ( v ) ( v z ) p + 1 d v p ! 2 π i Γ β v ( 1 v ) 2 ( v z ) p + 1 f ( v ) d v p ! 2 π 2 π r 1 M r ( α , β ) r 1 r p + 1 + p ! 2 π 2 π r 1 β r 1 1 + r 1 f r 1 2 r 1 r p + 1 {:[|(p!)/(2pii)int_(Gamma)((n+beta)^(2)(S_(n)^((alpha,beta))(f)(v)-f(v)+(beta v-alpha)/(n+beta)f^(')(v)-(nv(1-v))/(2(n+beta)^(2))f^('')(v)))/((v-z)^(p+1))(d)v-:}],[quad-(p!)/(2pii)int_(Gamma)(beta v(1-v))/(2(v-z)^(p+1))f^('')(v)dv| <= (p!)/(2pi)*(2pir_(1)M_(r)^((alpha,beta)))/((r_(1)-r)^(p+1))+(p!)/(2pi)*(2pir_(1)betar_(1)(1+r_(1))||f^('')||_(r_(1)))/(2(r_(1)-r)^(p+1)):}]:}\begin{aligned} & \left\lvert\, \frac{p!}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{(n+\beta)^{2}\left(S_{n}^{(\alpha, \beta)}(f)(v)-f(v)+\frac{\beta v-\alpha}{n+\beta} f^{\prime}(v)-\frac{n v(1-v)}{2(n+\beta)^{2}} f^{\prime \prime}(v)\right)}{(v-z)^{p+1}} \mathrm{~d} v-\right. \\ & \quad-\frac{p!}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{\beta v(1-v)}{2(v-z)^{p+1}} f^{\prime \prime}(v) \mathrm{d} v \left\lvert\, \leq \frac{p!}{2 \pi} \cdot \frac{2 \pi r_{1} M_{r}^{(\alpha, \beta)}}{\left(r_{1}-r\right)^{p+1}}+\frac{p!}{2 \pi} \cdot \frac{2 \pi r_{1} \beta r_{1}\left(1+r_{1}\right)\left\|f^{\prime \prime}\right\|_{r_{1}}}{2\left(r_{1}-r\right)^{p+1}}\right. \end{aligned}|p!2πiΓ(n+β)2(Sn(α,β)(f)(v)f(v)+βvαn+βf(v)nv(1v)2(n+β)2f(v))(vz)p+1 dvp!2πiΓβv(1v)2(vz)p+1f(v)dv|p!2π2πr1Mr(α,β)(r1r)p+1+p!2π2πr1βr1(1+r1)fr12(r1r)p+1
Denoting now F p ( z ) = H ( p ) ( z ) F p ( z ) = H ( p ) ( z ) F_(p)(z)=H^((p))(z)F_{p}(z)=H^{(p)}(z)Fp(z)=H(p)(z), we prove that F p r > 0 F p r > 0 ||F_(p)||_(r) > 0\left\|F_{p}\right\|_{r}>0Fpr>0. Indeed, if we suppose that F p r = 0 F p r = 0 ||F_(p)||_(r)=0\left\|F_{p}\right\|_{r}=0Fpr=0 then it follows that f f fff satisfies the differential equation
β z f ( z ) + z ( 1 z ) 2 f ( z ) = Q p 1 ( z ) , | z | r β z f ( z ) + z ( 1 z ) 2 f ( z ) = Q p 1 ( z ) , | z | r -beta zf^(')(z)+(z(1-z))/(2)f^('')(z)=Q_(p-1)(z),AA|z| <= r-\beta z f^{\prime}(z)+\frac{z(1-z)}{2} f^{\prime \prime}(z)=Q_{p-1}(z), \forall|z| \leq rβzf(z)+z(1z)2f(z)=Qp1(z),|z|r
where Q p 1 ( z ) Q p 1 ( z ) Q_(p-1)(z)Q_{p-1}(z)Qp1(z) is a polynomial of degree p 1 p 1 <= p-1\leq p-1p1. Simplifying with z z zzz, making the substitution y ( z ) = f ( z ) y ( z ) = f ( z ) y(z)=f^(')(z)y(z)=f^{\prime}(z)y(z)=f(z), searching y ( z ) y ( z ) y(z)y(z)y(z) in the form y ( z ) = k = 0 b k z k y ( z ) = k = 0 b k z k y(z)=sum_(k=0)^(oo)b_(k)z^(k)y(z)=\sum_{k=0}^{\infty} b_{k} z^{k}y(z)=k=0bkzk and then replacing in the differential equation, by simple calculations we easily obtain that b k = 0 b k = 0 b_(k)=0b_{k}=0bk=0 for all k p 1 k p 1 k >= p-1k \geq p-1kp1, that is y ( z ) y ( z ) y(z)y(z)y(z) is a polynomial of degree p 2 p 2 <= p-2\leq p-2p2. This implies the contradiction that f f fff is a polynomial of degree p 1 p 1 <= p-1\leq p-1p1.
Continuing exactly as in the proof of Theorem 2.1 (with S n ( α , β ) ( f ) f r S n ( α , β ) ( f ) f r ||S_(n)^((alpha,beta))(f)-f||_(r)\left\|S_{n}^{(\alpha, \beta)}(f)-f\right\|_{r}Sn(α,β)(f)fr replaced by [ S n ( α , β ) ( f ) ] ( p ) f ( p ) r S n ( α , β ) ( f ) ( p ) f ( p ) r ||[S_(n)^((alpha,beta))(f)]^((p))-f^((p))||_(r)\left\|\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}-f^{(p)}\right\|_{r}[Sn(α,β)(f)](p)f(p)r ), finally there exists an index n 0 N n 0 N n_(0)inNn_{0} \in \mathbb{N}n0N depending on f , r , r 1 f , r , r 1 f,r,r_(1)f, r, r_{1}f,r,r1 and p p ppp, such that for all n n 0 n n 0 n >= n_(0)n \geq n_{0}nn0 we have
[ S n ( α , β ) ( f ) ] ( p ) f ( p ) r 1 n C 0 2 S n ( α , β ) ( f ) ( p ) f ( p ) r 1 n C 0 2 ||[S_(n)^((alpha,beta))(f)]^((p))-f^((p))||_(r) >= (1)/(n)*(C_(0))/(2)\left\|\left[S_{n}^{(\alpha, \beta)}(f)\right]^{(p)}-f^{(p)}\right\|_{r} \geq \frac{1}{n} \cdot \frac{C_{0}}{2}[Sn(α,β)(f)](p)f(p)r1nC02
Also, the cases when n { 1 , 2 , , n 0 1 } n 1 , 2 , , n 0 1 n in{1,2,dots,n_(0)-1}n \in\left\{1,2, \ldots, n_{0}-1\right\}n{1,2,,n01} are similar with those in the proof of Theorem 2.1.

REFERENCES

[1] Gal, S.G., Approximation by complex Bernstein-Stancu polynomials in compact disks, Results in Mathematics, 2008, accepted for publication.
[2] Gal, S.G., Exact orders in simultaneous approximation by complex Bernstein polynomials, J. Concr. Applic. Math., 2009, accepted for publication.
Received by the editors: March 2, 2008.

  1. ^(†){ }^{\dagger} This work has been supported by the Romanian Ministry of Education and Research, under CEEX grant: 2-CEx 06-11-96.
    *Department of Mathematics and Computer Science, University of Oradea, Universităţii str., no. 1, 410087 Oradea, Romania, e-mail: galso@uoradea.ro.