On a theorem of Baire about lower semicontinuous functions
DOI:
https://doi.org/10.33993/jnaat371-877Keywords:
quasi-metric space, semi-Lipschitz function, approximationAbstract
A theorem of Baire concerning the approximation of lower semicontinuous real valued functions defined on a metric space, by increasing sequences of continuous functions is extended to the "nonsymmetric" case, i.e. for quasi-metric spaces.Downloads
References
Baire, R., Leçon sur les fonctions discontinues, Paris, Collection Borel, 1905, pp. 121-123.
Borodin, P.A., The Banach-Mazur theorem for spaces with asymmetric norm and its applications in convex analysis, Mat. Zametki, 69, no. 3, pp. 329-337, 2001, https://doi.org/10.4213/mzm506 DOI: https://doi.org/10.4213/mzm506
Collins, J. and Zimmer, J. An asymmetric Arzèla-Ascoli theorem, Topology Appl., 154, no. 11, pp. 2312-2322, 2007, https://doi.org/10.1016/j.topol.2007.03.006 DOI: https://doi.org/10.1016/j.topol.2007.03.006
Künzi, H.P.A., Nonsymmetric distances and their associated topologies: About the origin of basic ideas in the area of asymmetric topology, in: Handbook of the History of General Topology, edited. by C.E. Aull and R. Lower, vol. 3, Kluwer Acad. Publ., Dordrecht, pp. 853-968, 2001, https://doi.org/10.1007/978-94-017-0470-0_3 DOI: https://doi.org/10.1007/978-94-017-0470-0_3
McShane, E.T., Extension of range of fucntions, Bull. Amer. Math. Soc., 40, pp. 837-842, 1934, https://doi.org/10.1090/s0002-9904-1934-05978-0 DOI: https://doi.org/10.1090/S0002-9904-1934-05978-0
Menucci, A., On asymmetric distances, Technical Report, Scuola Normale Superiore, Pisa, 2004.
Mustăţa, C., Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numér. Théor. Approx., 30, no. 1, pp. 61-67, 2001, http://ictp.acad.ro/jnaat/journal/article/view/2001-vol30-no1-art8
Nicolescu, M., Mathematical Analysis, Vol. II, Editura Tehnică, Bucharest, p. 119, 1958 (in Romanian).
Precupanu, A., Mathematical Analysis: Measure and Integration, Vol. I., Editura Universităţii A.I. Cuza Iaşi, 2006 (Romanian).
Romaguera, S. and Sanchis, M., Semi-Lipschitz functions and best-approximation in quasi-metric spaces, J. Approx. Theory, 103, pp. 292-301, 2000, https://doi.org/10.1006/jath.1999.3439 DOI: https://doi.org/10.1006/jath.1999.3439
Romaguera, S. and Sanchis, M., Properties of the normed cone of semi-Lipschitz functions. Acta Math. Hungar., 108, no. 1-2, pp. 55-70, 2005, https://doi.org/10.1007/s10474-005-0208-9 DOI: https://doi.org/10.1007/s10474-005-0208-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.