Preconditioning by an extended matrix technique for convection-diffusion-reaction equations
DOI:
https://doi.org/10.33993/jnaat372-890Keywords:
multilevel discretization, spectrally equivalent matrices, mesh independent preconditioning, positive semidefinite systems, CGLS algorithmAbstract
In this paper we consider a preconditioning technique for the ill-conditioned systems arising from discretisations of nonsymmetric elliptic boundary value problems. The rectangular preconditioning matrix is constructed via the transfer operators between successive discretization levels of the initial problem. In this way we get an extended, square, singular, consistent, but mesh independent well-conditioned linear system. Numerical experiments are presented for a 2D convection-diffusion-reaction problem.Downloads
References
Björck, A., Numerical Methods for Least Squares Problems, SIAM Philadelphia, 1996, https://doi.org/10.1137/1.9781611971484 DOI: https://doi.org/10.1137/1.9781611971484
Briggs, L. W., A Multigrid Tutorial, SIAM Philadelphia, 1987.
Elman, H. C. and Schultz M. H., Preconditioning by fast direct methods for nonself-adjoint nonseparable elliptic equations, SIAM J. Numer. Anal., 23, no. 1, pp. 44-57, 1986, https://doi.org/10.1137/0723004 DOI: https://doi.org/10.1137/0723004
Golub, G. H. and van Loan, C. F., Matrix Computations, The John's Hopkins Univ. Press, Baltimore, 1983.
Griebel, M., Multilevel algorithms considered as iterative methods on semidefinite systems. SIAM J. Sci. Comput., 15, no. 3, pp. 547-565, 1994, https://doi.org/10.1137/0915036 DOI: https://doi.org/10.1137/0915036
Griebel, M., Zenger, C. and Zimmer, S., Multilevel Gauss-Seidel-algorithms for full and sparse grid problems. Computing, 50, pp. 127-148, 1993, https://doi.org/10.1007/bf02238610 DOI: https://doi.org/10.1007/BF02238610
Hackbusch, W., Elliptic Differential Equations. Theory and Numerical Treatment, Springer-Verlag, Berlin, 1987.
Hackbusch, W., Iterative Solution of Large Sparse Systems of Equations, Springer-Verlag, Berlin, 1994, https://doi.org/10.1007/978-1-4612-4288-8 DOI: https://doi.org/10.1007/978-1-4612-4288-8
Marchouk, G. and Agochkov, V., Introduction aux Méthodes des Éléments Finis, Éditions MIR, Moscou, 1985.
Oden, J.T. and Reddy, J.N., An Introduction to the Mathematical Theory of Finite Elements, John Wiley and Sons, Inc., 1976.
Oswald, P., Multilevel Finite Element Approximations, Teubner Skripten zur Numerik, Stuttgart, 1994. DOI: https://doi.org/10.1007/978-3-322-91215-2
Popa, C., Preconditioning conjugate gradient method for nonsymmetric systems, Intern. J. Computer Math., 58, pp. 117-133, 1995, https://doi.org/10.1080/00207169508804438 DOI: https://doi.org/10.1080/00207169508804438
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.