Preconditioning by an extended matrix technique for convection-diffusion-reaction equations


  • Aurelian Nicola Ovidius University, Constanţa, Romania
  • Constantin Popa Ovidius University, Constanţa, Romania



multilevel discretization, spectrally equivalent matrices, mesh independent preconditioning, positive semidefinite systems, CGLS algorithm
Abstract views: 206


In this paper we consider a preconditioning technique for the ill-conditioned systems arising from discretisations of nonsymmetric elliptic boundary value problems. The rectangular preconditioning matrix is constructed via the transfer operators between successive discretization levels of the initial problem. In this way we get an extended, square, singular, consistent, but mesh independent well-conditioned linear system. Numerical experiments are presented for a 2D convection-diffusion-reaction problem.


Download data is not yet available.


Björck, A., Numerical Methods for Least Squares Problems, SIAM Philadelphia, 1996, DOI:

Briggs, L. W., A Multigrid Tutorial, SIAM Philadelphia, 1987.

Elman, H. C. and Schultz M. H., Preconditioning by fast direct methods for nonself-adjoint nonseparable elliptic equations, SIAM J. Numer. Anal., 23, no. 1, pp. 44-57, 1986, DOI:

Golub, G. H. and van Loan, C. F., Matrix Computations, The John's Hopkins Univ. Press, Baltimore, 1983.

Griebel, M., Multilevel algorithms considered as iterative methods on semidefinite systems. SIAM J. Sci. Comput., 15, no. 3, pp. 547-565, 1994, DOI:

Griebel, M., Zenger, C. and Zimmer, S., Multilevel Gauss-Seidel-algorithms for full and sparse grid problems. Computing, 50, pp. 127-148, 1993, DOI:

Hackbusch, W., Elliptic Differential Equations. Theory and Numerical Treatment, Springer-Verlag, Berlin, 1987.

Hackbusch, W., Iterative Solution of Large Sparse Systems of Equations, Springer-Verlag, Berlin, 1994, DOI:

Marchouk, G. and Agochkov, V., Introduction aux Méthodes des Éléments Finis, Éditions MIR, Moscou, 1985.

Oden, J.T. and Reddy, J.N., An Introduction to the Mathematical Theory of Finite Elements, John Wiley and Sons, Inc., 1976.

Oswald, P., Multilevel Finite Element Approximations, Teubner Skripten zur Numerik, Stuttgart, 1994. DOI:

Popa, C., Preconditioning conjugate gradient method for nonsymmetric systems, Intern. J. Computer Math., 58, pp. 117-133, 1995, DOI:




How to Cite

Nicola, A., & Popa, C. (2008). Preconditioning by an extended matrix technique for convection-diffusion-reaction equations. Rev. Anal. Numér. Théor. Approx., 37(2), 181–190.