Solving inverse problems via weak contractive maps

Authors

  • Ştefan M. Şoltuz Tiberiu Popoviciu Institute of Numerical Analysis

Keywords:

weak contractive maps, inverse problems

Abstract

We prove a "collage'' theorem for weak contractive maps and we use it for inverse problems.

Downloads

Download data is not yet available.

References

Berinde, V., Approximating fixed points of weak contractions using Picard iteratioon, Nonlinear Analysis Forum, 9, pp. 43-53, 2004.

Berinde, M. and Berinde, V., On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl., 326, pp. 772-782, 2007, https://doi.org/10.1016/j.jmaa.2006.03.016

Kunze, H.E. and Vrscay, E.R., Solving inverse problems for ordinary differential equations using the Picard contraction mapping, Inverse Problems, 15, pp. 745-770, 1999, https://doi.org/10.1088/0266-5611/15/3/308

Kunze, H.E. and Gomes, S., Solving an inverse problem for Urison-type integral equations using Banach's fixed point theorem, Inverse Problems, 19, pp. 411-418, 2003, https://doi.org/10.1088/0266-5611/19/2/310

Kunze, H.E., Hicken, J.E. and Vrscay, E.R., Inverse problems for ODEs using contraction maps and suboptimality for the `collage method', Inverse Problems, 20, pp. 977-991, 2004, https://doi.org/10.1088/0266-5611/20/3/019

Downloads

Published

2008-08-01

How to Cite

Şoltuz, Ştefan M. (2008). Solving inverse problems via weak contractive maps. Rev. Anal. Numér. Théor. Approx., 37(2), 217–220. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/2008-vol37-no2-art14

Issue

Section

Articles