On the multi-decadal oscillation of Atlantic tropical storm activity

Authors

  • Constantin Andronache Boston College
  • Nicolae Suciu Tiberiu Popoviciu Institute of Numerical Analysis
  • Călin Vamoş Tiberiu Popoviciu Institute of Numerical Analysis

Keywords:

time series, quasi-periodicity, trend, non-stationarity

Abstract

Long term Atlantic tropical storm activity is described by the time series of the yearly Accumulated Cyclone Energy (ACE) Index for the time interval 1851-2007. ACE is a measure of total wind energy for North Atlantic basin and land falling tropical cyclone activity. Since the ACE index reflects a combination of storm intensity and duration it is a better measure of overall activity and likely damage than the number of either basin or land falling tropical storms or hurricanes. The yearly ACE time series is non-stationary, and one step toward detecting possible long-term quasi-periods is to detrend the original data. In this paper we use a procedure for data transformation by which ACE index is fitted in least square sense with polynomials of increasing order, followed by detrend. It is shown that, with some approximation, the obtained time series is cyclostationary, and a multi-decadal oscillation is detectable, as indicated by the power spectrum analysis.

Downloads

Download data is not yet available.

References

Bell, G. D. et al., Climate assessment for 1999, Bull. Amer. Meteor. Soc., 81, 1328, 1999, https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2

Efron, B., Bootstrap Methods: Another Look at the Jackknife, The Annals of Statistics 7 (1), pp. 1-26, 1979, https://doi.org/10.1214/aos/1176344552

Emanuel, K. E., Increasing destructiveness of tropical cyclones over the past 30 years, Nature, 436, pp. 686-688, 2005, https://doi.org/10.1038/nature03906

Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M. and Gray, W. M., The recent increase in Atlantic hurricane activity: Causes and implications, Science, 293, pp. 474-479, 2001, https://doi.org/10.1126/science.1060040

Gray, W., Sheaffer, J. D. and Landsea, C. W., Climate trends associated with multi-decadal variability of Atlantic hurricane activity. Hurricanes: Climate and Socioeconomic Impacts, H. F. Diaz and R. S. Pulwarty, Eds., Springer-Verlag, pp. 15-52, 1997, https://doi.org/10.1007/978-3-642-60672-4_2

Kantz, H. and Schreiber, T., Nonlinear Time Series Analysis, Cambridge Univ. Press, pp. 369, 2004.

Kaplan, A., Cane, M., Kushnir, Y., Clement, A., Blumenthal, M. and Rajagopalan, B., Analyses of global sea surface temperature 1856-1991, J. Geophys. Res, 103, pp. 18567-18589, 1998, https://doi.org/10.1029/97jc01736

Kerr, R. A., A North Atlantic climate pacemaker for the centuries, Science, 288, pp. 1984-1985, 2000, https://doi.org/10.1126/science.288.5473.1984

Klotzbach, P. J. and Gray, W. M., Causes of the unusually destructive 2004 Atlantic basin hurricane season, BAMS, pp. 1325-1333, 2006, https://doi.org/10.1175/bams-87-10-1325

Knight, Jeff. R., Robert J. Allan, Folland, Chris K. Vellinga, Michael and Mann, Michael E., A signature of persistent natural thermohaline circulation cycles in observed climate, Geophys. Res. Lett., 32, L20708, 2005, https://doi.org/10.1029/2005gl024233

Knutson, T. R., Tuleya, R. E., Shen, W. and Ginis, I., Impact of CO₂-Induced Warming on Hurricane Intensities as Simulated in a Hurricane Model with Ocean Coupling, J. of Climate, 14, pp. 2458-2468, 2000, https://doi.org/10.1175/1520-0442(2001)014%3C2458:iociwo%3E2.0.co;2

Landsea, C. W., Anderson, C., Charles, N., Clark, G. Dunion, J., Fernandez-Partagas, J., Hungerford, P., Neumann, C. and Zimmer, M., The Atlantic hurricane database re-analysis project: Documentation for the 1851-1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present and Future, R. J. Murname and K.-B. Liu, Eds., Columbia University Press, pp. 177-221, 2004.

Landsea, C. W., Counting Atlantic tropical cyclones back to 1900, EOS, 88, pp. 197-202, 2007, https://doi.org/10.1029/2007eo180001

Parker, D.E., Jones, P.D., Folland, C.K. and Bevan, A., Interdecadal changes of surface temperature since the late nineteenth century, J. Geophys. Res., 99, p. 14373-14399, 1994, https://doi.org/10.1029/94jd00548

Pielke, R. A. Rr., Landsea, C., Mayfield, M., Laver, J. and Pasch, R., Hurricanes and global warming, Bull. Amer. Meteo. Soc., 2005, https://doi.org/10.1175/BAMS-86-11-1571

Reynolds, R.W. and Smith, T.M., Improved global sea surface temperature analysis using optimum interpolation, J. Climate, 7, pp. 929-948, 1994, https://doi.org/10.1175/1520-0442(1994)007%3C0929:igssta%3E2.0.co;2

Saffir, H. and Simpson, R., The hurricane disaster potential scale, Weatherwise, 27, pp. 169-186, 1974, https://doi.org/10.1080/00431672.1974.9931702

Sutton, R. T. and Hodson, Daniel L. R., Atlantic Ocean Forcing of North American and European Summer Climate, Science, 309, pp. 115-118, 2005, https://doi.org/10.1126/science.1109496

Trenberth, K., Uncertainty in hurricanes and global warming, Science, 308, pp. 1753-1754, 2005, https://doi.org/10.1126/science.1112551

Vamoş, C., Automatic algorithm for monotone trend removal, Physical Review E 75, 036705, 2007, https://doi.org/10.1103/physreve.75.036705

Downloads

Published

2008-08-01

How to Cite

Andronache, C., Suciu, N., & Vamoş, C. (2008). On the multi-decadal oscillation of Atlantic tropical storm activity. Rev. Anal. Numér. Théor. Approx., 37(2), 109–117. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/2008-vol37-no2-art2

Issue

Section

Articles