Newton's method in Riemannian manifolds

Authors

  • Ioannis K. Argyros Cameron University, USA

Keywords:

Newton's method, Riemannian manifold, local/semilocal convergence, singularity of a vector field, Newton-Kantorovich method
Abstract views: 220

Abstract

Using more precise majorizing sequences than before [1], [8], and under the same computational cost, we provide a finer semilocal convergence analysis of Newton's method in Riemannian manifolds with the following advantages: larger convergence domain, finer error bounds on the distances involved, and a more precise information on the location of the singularity of the vector field.

Downloads

Download data is not yet available.

References

Alvarez, F., Bolte, J. and Munier, J., A unifying local convergence result for Newton's method in Riemannian manifolds, Institut National de Recherche en informatique et en automatique, Theme Num-Numeriques, Project, Sydoco, Rapport de recherche No. 5381, November 2004, France.

Argyros, I. K., An improved convergence analysis and applications for Newton-like methods in Banach space, Numer. Funct. Anal. Optim., 24, nos. 7-8, pp. 653-672, 2003, https://doi.org/10.1081/nfa-120026364

Argyros, I. K., A unifying local-semilocal convergence and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Applic., 298, pp. 374-397, 2004, https://doi.org/10.1016/j.jmaa.2004.04.008

Argyros, I. K., On the Newton-Kantorovich method in Riemannian manifolds, Advances in Nonlinear Variational Inequalities, 8, no. 2, pp. 81-85, 2005.

Argyros, I. K., Computational theory of iterative methods, Series: Studies in Computational Mathematics, 15, Editors, C.K. Chui and L. Wuytack, Elsevier Publ. Co., 2007, New-York, USA.

Argyros, I. K., On a class of Newton-like methods for solving nonlinear equations, J. Comput. Appl. Math., https://doi.org/10.1016/j.cam.2008.08.042

Do Carano, M., Riemannian Geometry, Birkhäuser, Boston, 1992, https://doi.org/10.1007/978-1-4757-2201-7

Ferreira, O. P. and Svaiter, B. F., Kantorovich's theorem on Newton's method in Riemannian manifolds, J. Complexity, 18, pp. 304-353, 2002, https://doi.org/10.1006/jcom.2001.0582

Kantorovich, L. V. and Akilov, G. P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982.

Zabrejko, P. P. and Nguen, D. F., The majorant method in the theory of Newton-Kantorovich approximations and the Ptak error estimates, Numer. Funct. Anal. Optim., 9, pp. 671-674, 1987, https://doi.org/10.1080/01630568708816254

Downloads

Published

2008-08-01

How to Cite

Argyros, I. K. (2008). Newton’s method in Riemannian manifolds. Rev. Anal. Numér. Théor. Approx., 37(2), 119–125. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/2008-vol37-no2-art3

Issue

Section

Articles