Newton's method in Riemannian manifolds
DOI:
https://doi.org/10.33993/jnaat372-883Keywords:
Newton's method, Riemannian manifold, local/semilocal convergence, singularity of a vector field, Newton-Kantorovich methodAbstract
Using more precise majorizing sequences than before [1], [8], and under the same computational cost, we provide a finer semilocal convergence analysis of Newton's method in Riemannian manifolds with the following advantages: larger convergence domain, finer error bounds on the distances involved, and a more precise information on the location of the singularity of the vector field.Downloads
References
Alvarez, F., Bolte, J. and Munier, J., A unifying local convergence result for Newton's method in Riemannian manifolds, Institut National de Recherche en informatique et en automatique, Theme Num-Numeriques, Project, Sydoco, Rapport de recherche No. 5381, November 2004, France.
Argyros, I. K., An improved convergence analysis and applications for Newton-like methods in Banach space, Numer. Funct. Anal. Optim., 24, nos. 7-8, pp. 653-672, 2003, https://doi.org/10.1081/nfa-120026364 DOI: https://doi.org/10.1081/NFA-120026364
Argyros, I. K., A unifying local-semilocal convergence and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Applic., 298, pp. 374-397, 2004, https://doi.org/10.1016/j.jmaa.2004.04.008 DOI: https://doi.org/10.1016/j.jmaa.2004.04.008
Argyros, I. K., On the Newton-Kantorovich method in Riemannian manifolds, Advances in Nonlinear Variational Inequalities, 8, no. 2, pp. 81-85, 2005.
Argyros, I. K., Computational theory of iterative methods, Series: Studies in Computational Mathematics, 15, Editors, C.K. Chui and L. Wuytack, Elsevier Publ. Co., 2007, New-York, USA.
Argyros, I. K., On a class of Newton-like methods for solving nonlinear equations, J. Comput. Appl. Math., https://doi.org/10.1016/j.cam.2008.08.042 DOI: https://doi.org/10.1016/j.cam.2008.08.042
Do Carano, M., Riemannian Geometry, Birkhäuser, Boston, 1992, https://doi.org/10.1007/978-1-4757-2201-7 DOI: https://doi.org/10.1007/978-1-4757-2201-7
Ferreira, O. P. and Svaiter, B. F., Kantorovich's theorem on Newton's method in Riemannian manifolds, J. Complexity, 18, pp. 304-353, 2002, https://doi.org/10.1006/jcom.2001.0582 DOI: https://doi.org/10.1006/jcom.2001.0582
Kantorovich, L. V. and Akilov, G. P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982. DOI: https://doi.org/10.1016/B978-0-08-023036-8.50010-2
Zabrejko, P. P. and Nguen, D. F., The majorant method in the theory of Newton-Kantorovich approximations and the Ptak error estimates, Numer. Funct. Anal. Optim., 9, pp. 671-674, 1987, https://doi.org/10.1080/01630568708816254 DOI: https://doi.org/10.1080/01630568708816254
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.