A simple proof of Popoviciu's inequality
DOI:
https://doi.org/10.33993/jnaat372-884Keywords:
Popoviciu's inequality, convex function, convex combinationAbstract
T. Popoviciu [5] has proved in 1965 the following inequality relating the values of a convex function \(f:I\rightarrow\mathbb{R}\) at the weighted arithmetic means of the subfamilies of a given family of points \(x_{1},...,x_{n}\in I\):\begin{align*}& \sum\limits_{1\leq i_{1}<\cdots <i_{p}\leq n}(\lambda_{i_{1}}+\cdots +\lambda _{i_{p}})\,f\left( \tfrac{\lambda_{i_{1}}x_{i_{1}}+\cdots +\lambda_{i_{p}}x_{i_{p}}}{\lambda _{i_{1}}+\cdots +\lambda _{i_{p}}}\right) \\& \leq \tbinom{n-2}{p-2}\left[\tfrac{n-p}{p-1}\,\sum\limits_{i=1}^{n}\,\lambda_{i}\,f(x_{i})+\left( \sum\limits_{i=1}^{n}\,\lambda _{i}\right) \,f\left( \tfrac{\lambda _{1}x_{1}+\cdots +\lambda _{n}x_{n}}{\lambda _{1}+\cdots+\lambda _{n}}\right) \right] .\end{align*}Here \(n\geq 3,\) \(p\in \{2,...,n-1\}\) and \(\lambda _{1},...,\lambda_{n}\) are positive numbers (representing weights). The aim of this paper is to give a simple argument based on mathematical induction and a majorization lemma.Downloads
References
Bencze, M., Niculescu, C. P. and Popovici, F., Convexity according to Popoviciu's inequality, submitted.
Niculescu, C. P. and Persson, L.-E., Convex Functions and their applications. A Contemporary Approach, CMS Books in Mathematics, vol. 23, Springer-Verlag, New York, 2006, https://link.springer.com/book/10.1007%2F0-387-31077-0
Niculescu, C. P. and Popovici, F., A Refinement of Popoviciu's Inequality, Bull. Soc. Sci. Math. Roum., 49 (97), no. 3, pp. 285-290, 2006.
Pečarić, J. E., Proschan, F. and Tong, Y. C., Convex functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1992, https://doi.org/10.1016/s0076-5392(08)x6162-4 DOI: https://doi.org/10.1016/S0076-5392(08)X6162-4
Popoviciu, T., Sur certaines inégalités qui caractérisent les fonctions convexes, Analele Ştiinţifice Univ. "Al. I. Cuza", Iaşi, Secţia Mat., 11, pp. 155-164, 1965.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.