Thermal stability problems in a thin porous plate
DOI:
https://doi.org/10.33993/jnaat372-887Keywords:
porous plates, micropolar theory, stability analysisAbstract
Some numerical and analytical aspects of the stability of the formal solution for the dynamical problem associated with the governing equations in a thin porous plate under a constant thermal source are discussed.Downloads
References
Ene, R. and Blaga, A.M., Thermal radiation transport in a thin porous plate, Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics, ICTAMI 2007, Alba Iulia, Romania, pp. 105-113.
Ene, R. and Blaga, A.M., Thermal stresses in a thin porous plate, International Conference on Nonlinear Operators, Differencial Equations and Applications, July 4-8, 2007, Cluj Napoca, Romania.
Ene, R. and Blaga, A.M., On the geometry of a thin porous plate, Sem. Iti. "Tiberiu Popoviciu"-Convexitate şi Aproximare, Cluj Napoca, September, 26-29, 2007.
Fu, R., Long, Q.Y. and Lung, C.W., Relevance of the elastic exponent on the thickness of porous plates, J. of Phys. Condensed Matter, 4, (1), pp. 49-52, 1992, https://doi.org/10.1088/0953-8984/4/1/015 DOI: https://doi.org/10.1088/0953-8984/4/1/015
Pompei, A. and Rigano, M.A., On the bending of micropolar microelstic plates, Int. J of Eng. Sci., 44, nos. 18-19, pp. 1324-1333, 2006, https://doi.org/10.1016/j.ijengsci.2006.05.016 DOI: https://doi.org/10.1016/j.ijengsci.2006.05.016
Eringen, A.C., Theory of micropolar plates, ZAMP, 18, pp. 12-30, 1967, https://doi.org/10.1007/bf01593891 DOI: https://doi.org/10.1007/BF01593891
Green, A.E. and Lindsay, K.A., Thermoelasticity, J. of Elasticity, 2, pp. 1-7, 1972, https://doi.org/10.1007/bf00045689 DOI: https://doi.org/10.1007/BF00045689
Lord, H.W. and Shulman, Y., A generalized dynamical theory of thermoelasticity, J. of Mech. Phys. Solids, 15, pp. 299-309, 1967, https://doi.org/10.1016/0022-5096(67)90024-5 DOI: https://doi.org/10.1016/0022-5096(67)90024-5
Ieşan, D., Teoria termoelasticităţii, Ed. Acad. Rep. Soc. Rom., Bucureşti, 1979 (in Romanian).
Bârsan, M., Studiul deformării unor solide elastice cu microstructură, Ph.D. Thesis, Iaşi, 2003.
Pazy, A., Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, 1983. DOI: https://doi.org/10.1007/978-1-4612-5561-1
Kumar R. and Rani L., Deformation due to mechanical and thermal sources in a thermoelastic body with voids under axi-symmetric distributions, International Journal of Thermophysics, 28, no. 1, pp. 317-341, 2007, https://doi.org/10.1007/s10765-007-0146-6 DOI: https://doi.org/10.1007/s10765-007-0146-6
Kalik, C., Ecuaţii cu derivate parţiale, Ed. Didactică şi Pedagogică, 1980.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.