Thermal stability problems in a thin porous plate

Authors

  • Remus Ene University "Politehnica" of Timişoara, Romania
  • Ioana Dragomirescu University "Politehnica" of Timişoara, Romania

DOI:

https://doi.org/10.33993/jnaat372-887

Keywords:

porous plates, micropolar theory, stability analysis
Abstract views: 283

Abstract

Some numerical and analytical aspects of the stability of the formal solution for the dynamical problem associated with the governing equations in a thin porous plate under a constant thermal source are discussed.

Downloads

Download data is not yet available.

References

Ene, R. and Blaga, A.M., Thermal radiation transport in a thin porous plate, Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics, ICTAMI 2007, Alba Iulia, Romania, pp. 105-113.

Ene, R. and Blaga, A.M., Thermal stresses in a thin porous plate, International Conference on Nonlinear Operators, Differencial Equations and Applications, July 4-8, 2007, Cluj Napoca, Romania.

Ene, R. and Blaga, A.M., On the geometry of a thin porous plate, Sem. Iti. "Tiberiu Popoviciu"-Convexitate şi Aproximare, Cluj Napoca, September, 26-29, 2007.

Fu, R., Long, Q.Y. and Lung, C.W., Relevance of the elastic exponent on the thickness of porous plates, J. of Phys. Condensed Matter, 4, (1), pp. 49-52, 1992, https://doi.org/10.1088/0953-8984/4/1/015 DOI: https://doi.org/10.1088/0953-8984/4/1/015

Pompei, A. and Rigano, M.A., On the bending of micropolar microelstic plates, Int. J of Eng. Sci., 44, nos. 18-19, pp. 1324-1333, 2006, https://doi.org/10.1016/j.ijengsci.2006.05.016 DOI: https://doi.org/10.1016/j.ijengsci.2006.05.016

Eringen, A.C., Theory of micropolar plates, ZAMP, 18, pp. 12-30, 1967, https://doi.org/10.1007/bf01593891 DOI: https://doi.org/10.1007/BF01593891

Green, A.E. and Lindsay, K.A., Thermoelasticity, J. of Elasticity, 2, pp. 1-7, 1972, https://doi.org/10.1007/bf00045689 DOI: https://doi.org/10.1007/BF00045689

Lord, H.W. and Shulman, Y., A generalized dynamical theory of thermoelasticity, J. of Mech. Phys. Solids, 15, pp. 299-309, 1967, https://doi.org/10.1016/0022-5096(67)90024-5 DOI: https://doi.org/10.1016/0022-5096(67)90024-5

Ieşan, D., Teoria termoelasticităţii, Ed. Acad. Rep. Soc. Rom., Bucureşti, 1979 (in Romanian).

Bârsan, M., Studiul deformării unor solide elastice cu microstructură, Ph.D. Thesis, Iaşi, 2003.

Pazy, A., Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, 1983. DOI: https://doi.org/10.1007/978-1-4612-5561-1

Kumar R. and Rani L., Deformation due to mechanical and thermal sources in a thermoelastic body with voids under axi-symmetric distributions, International Journal of Thermophysics, 28, no. 1, pp. 317-341, 2007, https://doi.org/10.1007/s10765-007-0146-6 DOI: https://doi.org/10.1007/s10765-007-0146-6

Kalik, C., Ecuaţii cu derivate parţiale, Ed. Didactică şi Pedagogică, 1980.

Downloads

Published

2008-08-01

How to Cite

Ene, R., & Dragomirescu, I. (2008). Thermal stability problems in a thin porous plate. Rev. Anal. Numér. Théor. Approx., 37(2), 151–157. https://doi.org/10.33993/jnaat372-887

Issue

Section

Articles