Thermal stability problems in a thin porous plate


  • Remus Ene University "Politehnica" of Timişoara, Romania
  • Ioana Dragomirescu University "Politehnica" of Timişoara, Romania



porous plates, micropolar theory, stability analysis
Abstract views: 247


Some numerical and analytical aspects of the stability of the formal solution for the dynamical problem associated with the governing equations in a thin porous plate under a constant thermal source are discussed.


Download data is not yet available.


Ene, R. and Blaga, A.M., Thermal radiation transport in a thin porous plate, Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics, ICTAMI 2007, Alba Iulia, Romania, pp. 105-113.

Ene, R. and Blaga, A.M., Thermal stresses in a thin porous plate, International Conference on Nonlinear Operators, Differencial Equations and Applications, July 4-8, 2007, Cluj Napoca, Romania.

Ene, R. and Blaga, A.M., On the geometry of a thin porous plate, Sem. Iti. "Tiberiu Popoviciu"-Convexitate şi Aproximare, Cluj Napoca, September, 26-29, 2007.

Fu, R., Long, Q.Y. and Lung, C.W., Relevance of the elastic exponent on the thickness of porous plates, J. of Phys. Condensed Matter, 4, (1), pp. 49-52, 1992, DOI:

Pompei, A. and Rigano, M.A., On the bending of micropolar microelstic plates, Int. J of Eng. Sci., 44, nos. 18-19, pp. 1324-1333, 2006, DOI:

Eringen, A.C., Theory of micropolar plates, ZAMP, 18, pp. 12-30, 1967, DOI:

Green, A.E. and Lindsay, K.A., Thermoelasticity, J. of Elasticity, 2, pp. 1-7, 1972, DOI:

Lord, H.W. and Shulman, Y., A generalized dynamical theory of thermoelasticity, J. of Mech. Phys. Solids, 15, pp. 299-309, 1967, DOI:

Ieşan, D., Teoria termoelasticităţii, Ed. Acad. Rep. Soc. Rom., Bucureşti, 1979 (in Romanian).

Bârsan, M., Studiul deformării unor solide elastice cu microstructură, Ph.D. Thesis, Iaşi, 2003.

Pazy, A., Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, 1983. DOI:

Kumar R. and Rani L., Deformation due to mechanical and thermal sources in a thermoelastic body with voids under axi-symmetric distributions, International Journal of Thermophysics, 28, no. 1, pp. 317-341, 2007, DOI:

Kalik, C., Ecuaţii cu derivate parţiale, Ed. Didactică şi Pedagogică, 1980.




How to Cite

Ene, R., & Dragomirescu, I. (2008). Thermal stability problems in a thin porous plate. Rev. Anal. Numér. Théor. Approx., 37(2), 151–157.