Some types of convex functions on networks

Authors

  • Daniela Marian Technical University of Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat381-901

Keywords:

\(E-d\)-convex functions, roughly \(d\)-convex functions, roughly \(E-d\)-convex functions
Abstract views: 208

Abstract

We present and study some kinds of convex functions defined on undirected networks. The relations between these concepts are also presented. We adopt the definition of network as metric space used by Dearing P. M. and Francis R. L. in 1974.

Downloads

Download data is not yet available.

References

Dearing, P.M. and Francis, R.L., A minimax location problem on a network, Transportation Science, 8, pp. 333-343, 1974, https://doi.org/10.1287/trsc.8.4.333 DOI: https://doi.org/10.1287/trsc.8.4.333

Dearing, P.M., Francis, R.L. and Lowe, T.J., Convex location problems on tree networks, Oper. Res., 24, pp. 628-634, 1976, https://doi.org/10.1287/opre.24.4.628 DOI: https://doi.org/10.1287/opre.24.4.628

de Groot, J., Some special metrics in general topology, Colloq. Math., 6, pp. 283-286, 1958, https://doi.org/10.4064/cm-6-1-283-286 DOI: https://doi.org/10.4064/cm-6-1-283-286

Hartwig H., Local Boundedness and Continuity of Generalized Convex Functions, Optimizations, 26, pp. 1-13, 1992, https://doi.org/10.1080/02331939208843838 DOI: https://doi.org/10.1080/02331939208843838

Hu, T.C., Klee, V. and Larman, D., Optimization of Globally Convex Functions, SIAM Journal on Control and Optimization, 27, pp. 1026-1047, 1989, https://doi.org/10.1137/0327055 DOI: https://doi.org/10.1137/0327055

Iacob, M.E., Optimization of d-convex functions on networks, Studia Univ. Babeş-Bolyai Math., XL, no. 3, pp. 45-58, 1995.

Iacob, M.E., Convexity, approximation and optimization on networks, Doctoral Dissertation, Babeş-Bolyai Univ., Cluj-Napoca, 1997.

Iacob, M.E. and Soltan, V.P., On geodetic characteristic of networks, Stud. Cerc. Mat., 46, no. 5, pp. 521-527, 1994.

Labbé, M., Essay in network location theory, Cahiers de Centre d'Etudes et de Recherche Oper., 27, nos. 1-2, pp. 7-130, 1985.

Marian, D., An Axiomatic Approach to the Theory of E-Convex Functions, Proceedings of the "Tiberiu Popoviciu" Itinerant Seminar of Functional Equations, Approximation and Convexity, Cluj-Napoca, May 22-26, pp. 97-106, 2001.

Marian, D., Direcţii ale analizei matematice tratate pe grafe şi pe reţele, Teză de doctorat, Universitatea "Babeş-Bolyai", Cluj-Napoca, 2002.

Marian, D., Generalized Convex Functions and Mathematical Analysis on Networks, Research on Theory of Allure, Approximation, Convexity and Optimization, Cluj-Napoca, pp. 183-206, 1999.

Menger, K., Untersuchungen über allgemeine Metrik I, II, III, Math. Ann., 100, pp. 75-163, 1928, https://doi.org/10.1007/bf01448840 DOI: https://doi.org/10.1007/BF01448840

Phu, H.X., Six Kinds of Roughly Convex Functions, Reprint 95-15, IWR, University of Heidelberg, 1995.

Phu, H.X., Strictly Roughly Convexlike Functions, Reprint 96-02, IWR, University of Heidelberg, 1996.

Phu, H.X., γ-Subdifferential and γ-Convexity of Functions on the Real Line, Applied Mathematics & Optimization, 27, pp. 145-160, 1993, https://doi.org/10.1007/bf01195979 DOI: https://doi.org/10.1007/BF01195979

Phu, H.X., γ-Subdifferential and γ-Convexity of Functions on a Normed Space, Journal of Optimization Theory and Aplications, 85, pp. 649-676, 1995, https://doi.org/10.1007/bf02193061 DOI: https://doi.org/10.1007/BF02193061

Phu, H.X. and Hai, N.N., Some Analytical Properties of γ-convex Function on the Real Line, Journal of Optimization Theory and Aplications, 91, no. 3, pp. 671-694, 1996, https://doi.org/10.1007/bf02190127 DOI: https://doi.org/10.1007/BF02190127

Phu, H.X., Hai, N.N. and An, P.T., Piecewise Constant Roughly Convex Functions, Reprint M-09/1995, Fakultat für Mathematik, Naturwissenschaften und Informatik, Technische Universität Gottbus, 1995.

Popoviciu, E., Teoreme de medie din analiza matematică şi legătura lor cu teoria interpolării, Dacia Cluj, 1972 (in Romanian).

Popoviciu, E., Analiză matematică, Litografia Univ. "Babeş-Bolyai", Cluj-Napoca, 1974 (in Romanian).

Popoviciu, T., Les fonctions convexes, Herman, Paris, 1945.

Rockafellar, R.T., Convex Analysis, Princeton University Press, Princeton, New-Jersey, 1970.

Söllner, B., Eigenschaften γ-grobconvexer Mengen und Funktionen. Diplomarbeit, Universitat Leipzig, 1991.

Soltan, P.S., Helly's theorem for d-convex sets (in Russian), Dokl. Akad. Nauk SSSR, 205, no. 3, pp. 537-539, 1972.

Soltan, V.P. and Chepoi, V.D., Some classes of d-convex functions in a graph, Soviet Math. Dokl., 28, no. 3, pp. 793-796, 1983.

Soltan, V.P. and Soltan, P.S., d-convex functions (in Russian), Dokl. Akad. Nauk SSSR, 249, pp. 555-558 1979.

Soltan, P.S. and Prisakaru, K.F., The Steiner problem on graphs, Soviet Math. Dokl., 12, no. 3, pp. 734-738, 1971.

Soltan, V.P., d-convexity in graphs, Soviet Math. Dokl., 28, no. 2, pp. 419-421, 1983.

Soltan, V.P., Introduction to the axiomatic theory of convexity (in Russian), Shtiinta, Kishinev, 1984.

Soltan, V.P., Some properties of d-convex functions I, Amer. Math. Soc. Transl., 134, no. 2, pp. 39-44, 1987, https://doi.org/10.1090/trans2/134/04 DOI: https://doi.org/10.1090/trans2/134/04

Soltan, V.P., Some properties of d-convex functions II, Amer. Math. Soc. Transl., 134, no. 2, pp. 45-51, 1987, https://doi.org/10.1090/trans2/134/05 DOI: https://doi.org/10.1090/trans2/134/05

Soltan, V.P., Metric convexity in graphs, Studia Univ. "Babeş-Bolyai" Math., 36, no. 4, pp. 3-43, 1991.

Soltan, V.P., An Axiomatic Approach to the Theory of Convex Functions, Soviet Math. Dokl., 22, no. 2, pp. 467-470, 1980.

Youness, E.A., E-Convex Sets, E-Convex Functions, and E-Convex Programming, Journal of Optimization Theory and Aplications, 102, no. 2, pp. 439-450, 1999, https://doi.org/10.1023/a:1021792726715 DOI: https://doi.org/10.1023/A:1021792726715

Downloads

Published

2009-02-01

How to Cite

Marian, D. (2009). Some types of convex functions on networks. Rev. Anal. Numér. Théor. Approx., 38(1), 51–63. https://doi.org/10.33993/jnaat381-901

Issue

Section

Articles