On the convergence of Steffensen-type methods using recurrent functions nonexpansive mappings

Authors

  • Ioannis K. Argyros Cameron University, USA
  • Saïd Hilout Poitiers University, France

DOI:

https://doi.org/10.33993/jnaat382-908

Keywords:

Steffensen-type method, recurrent functions, Banach space, semilocal convergence
Abstract views: 231

Abstract

We introduce the new idea of recurrent functions to provide a new semilocal convergence analysis for Steffensen-type methods (STM) in a Banach space setting. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in many interesting cases[1]-[5], [12], [14]-[17], [23], [24], [26]. Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, and a differential equation are also provided in this study.

Downloads

Download data is not yet available.

References

Argyros, I.K., The secant method and fixed points of nonlinear operators, Monatshefte für Math., 106, pp. 85-94, 1988, https://doi.org/10.1007/bf01298829 DOI: https://doi.org/10.1007/BF01298829

Argyros, I.K., The theory and application of abstract polynomial equations, St.Lucie/CRC/Lewis Publ. Mathematics series, 1998, Boca Raton, Florida, U.S.A.

Argyros, I.K., A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl., 298, pp. 374-397, 2004, https://doi.org/10.1016/j.jmaa.2004.04.008 DOI: https://doi.org/10.1016/j.jmaa.2004.04.008

Argyros, I.K., Computational theory of iterative methods, Series: Studies in Computational Mathematics, 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co., New York, USA, 2007, https://doi.org/10.1016/s1570-579x(07)x8020-0 DOI: https://doi.org/10.1016/S1570-579X(07)X8020-0

Argyros, I.K., On a class of Newton-like methods for solving nonlinear equations, J. Comput. Appl. Math., 228, pp. 115-122, 2009, https://doi.org/10.1016/j.cam.2008.08.042 DOI: https://doi.org/10.1016/j.cam.2008.08.042

Chandrasekhar, S., Radiative transfer, Dover Publ., New York, 1960.

Chen, X., On the convergence of Broyden-like methods for nonlinear equations with nondifferentiable terms, Ann. Inst. Statist. Math., 42, pp. 387-401, 1990, https://doi.org/10.1007/bf00050844 DOI: https://doi.org/10.1007/BF00050844

Chen, X. and Yamamoto, T., Convergence domains of certain iterative methods for solving nonlinear equations, Numer. Funct. Anal. Optim., 10, pp. 37-48, 1989, https://doi.org/10.1080/01630568908816289 DOI: https://doi.org/10.1080/01630568908816289

Chen, Y. and Cai, D., Inexact overlapped block Broyden methods for solving nonlinear equations, Appl. Math. Comput., 136, pp. 215-228, 2003, https://doi.org/10.1016/s0096-3003(02)00026-7 DOI: https://doi.org/10.1016/S0096-3003(02)00026-7

Dennis, J.E., Toward a unified convergence theory for Newton--like methods, Nonlinear Functional Analysis and Applications (L.B. Rall, ed.), Academic Press, New York, pp. 425-472, 1971, https://doi.org/10.1016/b978-0-12-576350-9.50010-2 DOI: https://doi.org/10.1016/B978-0-12-576350-9.50010-2

Deuflhard, P., Newton methods for nonlinear problems. Affine invariance and adaptive algorithms, Springer Series in Computational Mathematics, 35, Springer-Verlag, Berlin, 2004.

Deuflhard, P. and Heindl, G., Affine invariant convergence theorems for Newton's method and extensions to related methods, SIAM J. Numer. Anal., 16, pp. 1-10, 1979, https://doi.org/10.1137/0716001 DOI: https://doi.org/10.1137/0716001

Huang, Z., A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math., 47, pp. 211-217, 1993, https://doi.org/10.1016/0377-0427(93)90004-u DOI: https://doi.org/10.1016/0377-0427(93)90004-U

Kantorovich, L.V. and Akilov, G.P., Functional Analysis, Pergamon Press, Oxford, 1982.

Păvăloiu, I., Sur la méthode de Steffensen pour la résolution des équations opérationnelles non linéaires, Rev. Roumaine Math. Pures Appl., 13(6), pp. 857-861, 1968.

Păvăloiu, I., Introduction in the theory of approximation of equations solutions, Dacia Ed., Cluj-Napoca, 1976.

Păvăloiu, I., On the convergency of a Steffensen-type method, Seminar on Mathematical Analysis, pp. 121-126, Preprint, pp. 91-7, "Babeş-Bolyai" Univ., Cluj-Napoca, 1991.

Li, D. and Fukushima, M., Globally convergent Broyden-like methods for semismooth equations and applications to VIP, NCP and MCP, Optimization and numerical algebra (Nanjing, 1999), Ann. Oper. Res., 103, pp. 71-97, 2001.

Ma, C., A smoothing Broyden-like method for the mixed complementarity problems, Math. Comput. Modelling, 41, pp. 523-538, 2005, https://doi.org/10.1016/j.mcm.2003.12.013 DOI: https://doi.org/10.1016/j.mcm.2003.12.013

Miel, G.J., Unified error analysis for Newton-type methods, Numer. Math., 33, pp. 391-396, 1979, https://doi.org/10.1007/bf01399322 DOI: https://doi.org/10.1007/BF01399322

Miel, G.J., Majorizing sequences and error bounds for iterative methods, Math. Comp., 34, pp. 185-202, 1980, https://doi.org/10.1090/s0025-5718-1980-0551297-4 ??? https://doi.org/10.2307/2006227 DOI: https://doi.org/10.1090/S0025-5718-1980-0551297-4

Moret, I., A note on Newton type iterative methods, Computing, 33, pp. 65-73, 1984, https://doi.org/10.1007/bf02243076 DOI: https://doi.org/10.1007/BF02243076

Potra, F.A., Sharp error bounds for a class of Newton-like methods, Libertas Mathematica, 5, pp. 71-84, 1985.

Ulm, S. Ju., A generalization of Steffensen's method for solving non-linear operator equations, (Russian), Z. Vycisl. Mat. i Mat. Fiz., 4, pp. 1093-1097, 1964.

Rheinboldt, W.C., A unified convergence theory for a class of iterative processes, SIAM J. Numer. Anal., 5, pp. 42-63, 1968, https://doi.org/10.1137/0705003 DOI: https://doi.org/10.1137/0705003

Yamamoto, T., A convergence theorem for Newton-like methods in Banach spaces, Numer. Math., 51, pp. 545-557, 1987, https://doi.org/10.1137/0705003 DOI: https://doi.org/10.1007/BF01400355

Zabrejko, P.P. and Nguen, D.F., The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates, Numer. Funct. Anal. Optim., 9, pp. 671-684, 1987, https://doi.org/10.1080/01630568708816254 DOI: https://doi.org/10.1080/01630568708816254

Zincenko, A.I., Some approximate methods of solving equations with non-differentiable operators, (Ukrainian), Dopovidi Akad. Nauk Ukraïn. RSR, pp. 156-161, 1963.

Downloads

Published

2009-08-01

How to Cite

Argyros, I. K., & Hilout, S. (2009). On the convergence of Steffensen-type methods using recurrent functions nonexpansive mappings. Rev. Anal. Numér. Théor. Approx., 38(2), 130–143. https://doi.org/10.33993/jnaat382-908

Issue

Section

Articles