An iterative method for approximating fixed points of Presić nonexpansive mappings

Authors

  • Vasile Berinde North University of Baia Mare, Romania
  • Mădălina Păcurar Babeş-Bolyai University, Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat382-909

Keywords:

Banach space, Presić type contraction condition, fixed point, \(k\)-step iteration procedure, nonexpansive type operator
Abstract views: 278

Abstract

Some fixed point theorems of Presić type for nonexpansive mappings\(f: X^k\rightarrow X\), where \(k\geq 1\) is an integer, are obtained.The main result of the paper unifies two important fixed point theorems published in the same year, 1965, the first one discovered independently by Browder [F.E. Browder, Nonexpansive nonlinear operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 54 (1965), 1041-1044], Göhde [D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr., 30(1965), 251-258] and Kirk [W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly,72 (1965), 1004-1006], while the second one is due to Presić [S.B. Presić, Sur une classe d' inéquationsaux differences finite et sur la convergence de certaines suites, Publ. Inst. Math. (Beograd)(N.S.), 5(19) (1965),75-78]. In this way we show how amazingly two apparently different beautiful results in mathematics can meet after almost half a century! This appears to be the first attempt to study multi-step iterative methods by means of the fixed point theory of nonexpansive mappings. Several related results in literature are extended, unified and generalized.

Downloads

Download data is not yet available.

References

Berinde, V., Iterative Approximation of Fixed Points, 2nd Ed., Springer Verlag, Berlin Heidelberg New York, 2007. DOI: https://doi.org/10.1109/SYNASC.2007.49

Browder, F.E., Nonexpansive nonlinear operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 54, pp. 1041-1044, 1965, https://doi.org/10.1073/pnas.54.4.1041 DOI: https://doi.org/10.1073/pnas.54.4.1041

Chen, Yong-Zhuo, A Presic' type contractive condition and its applications, Nonlinear Anal., 2009 (in press). DOI: https://doi.org/10.1016/j.na.2009.03.006

Chidume, C.O., Geometric Properties of Banach Spaces and Nonlinear Iterations, Springer Verlag, Berlin Heidelberg New York, 2009. DOI: https://doi.org/10.1007/978-1-84882-190-3

Cirić, L.B. and Presić, S.B., On Presić type generalization of the Banach contraction mapping principle, Acta Math. Univ. Comenianae, 76, No. 2, pp. 143-147, 2007.

Edelstein, M., A remark on a theorem of M. A. Krasnoselski, Amer. Math. Monthly, 73, pp. 509-510, 1966, https://doi.org/10.2307/2315474 DOI: https://doi.org/10.2307/2315474

Goebel, K. and Kirk, W.A., Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge, 1990. DOI: https://doi.org/10.1017/CBO9780511526152

Göhde, D., Zum Prinzip der kontraktiven Abbildung, Math. Nachr., 30, pp. 251-258, 1965, https://doi.org/10.1002/mana.19650300312 DOI: https://doi.org/10.1002/mana.19650300312

Ishikawa, S., Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., 59, No. 1, pp. 65-71, 1976, https://doi.org/10.1090/s0002-9939-1976-0412909-x DOI: https://doi.org/10.1090/S0002-9939-1976-0412909-X

Kirk, W.A., A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72, pp. 1004-1006, 1965, https://doi.org/10.2307/2313345 DOI: https://doi.org/10.2307/2313345

Krasnoselskij, M.A., Two remarks on the method of successive approximations (Russian), Uspehi Mat. Nauk., 10, No. 1 (63), pp. 123-127, 1955.

Păcurar, M., An approximate fixed point proof of the Browder-Gohde-Kirk fixed point theorem, Creative Math. Inf., 17, pp. 43-47, 2008.

Iterative Methods for Fixed Point Approximation, PhD Thesis, "Babeş-Bolyai" University, Cluj-Napoca, 2009.

A multi-step iterative method for approximating fixed points of Presić-Kannan operators, Acta Math. Univ. Comen. 79, No. 1, pp. 77-88, 2010.

Approximating common fixed points of Presić-Kannan type operators by a multi-step iterative method, An. Şt. Univ. Ovidius Constanţa 17, No. 1, pp. 153-168, 2009.

A multi-step iterative method for approximating common fixed points of Presić-Rus type operators on metric spaces, Studia Univ. Babeş-Bolyai Math., 55, No.1, pp. 149-162, 2010.

Păvăloiu, I., Rezolvarea ecuaţiilor prin interpolare, Editura Dacia, Cluj-Napoca, 1981 (in Romanian).

Pop, N., Interpolare şi aplicaţii, Risoprint, Cluj-Napoca, 2005 (in Romanian).

Presić, S.B., Sur une classe d' in equations aux différences finites et sur la convergence de certaines suites, Publ. Inst. Math. (Beograd)(N.S.), 5(19), pp. 75-78, 1965.

Rus, I.A., Principii şi aplicaţii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979 (in Romanian).

Rus I.A., An iterative method for the solution of the equation x=f(x,…,x), Rev. Anal. Numer. Theor. Approx., 10, No.1, pp. 95-100, 1981.

An abstract point of view in the nonlinear difference equations, Conf. on An., Functional Equations, App. and Convexity, Cluj-Napoca, October 15-16, pp. 272-276, 1999.

Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.

Schaefer, H., Uber die Methode sukzessiver Approximationen, Jahresber. Deutsch. Math. Verein., 59, pp. 131-140, 1957.

Downloads

Published

2009-08-01

How to Cite

Berinde, V., & Păcurar, M. (2009). An iterative method for approximating fixed points of Presić nonexpansive mappings. Rev. Anal. Numér. Théor. Approx., 38(2), 144–153. https://doi.org/10.33993/jnaat382-909

Issue

Section

Articles