A note on best selection of quasi Descartes systems
DOI:
https://doi.org/10.33993/jnaat382-910Keywords:
Descartes Systems, best approximationsAbstract
Let \(\{u_0, \dots, u_n\}\) be a quasi Descartes system of \(C[a, b]\) and \(p\) a positive number with \(1 < p < \infty\) or \(\infty\). In this note, we search for an \(m (\leqq n)\) dimensional subspace that possesses the least distance from \(u_n\) among all \(m (\leqq n)\) dimensional subspaces of \({\rm Span}\{ u_0, \ldots, u_{n-1}\}\).Downloads
References
Borosh, I., Chui, C. K. and Smith, P. W., Best uniform approximation from a collection of subspaces, Math. Z., 156, pp. 13-18, 1977, https://doi.org/10.1007/bf01215125 DOI: https://doi.org/10.1007/BF01215125
Borwein, P. and Erdélyi, T., Polynomials and Polynomial Inequalities, Springer, New York, 1995, https://doi.org/10.1007/978-1-4612-0793-1 DOI: https://doi.org/10.1007/978-1-4612-0793-1
Karlin, S. and Studden, W. J., Tchebycheff Systems: With Applications in Analysis and Statistics, Wiley-Interscience Publ., New York, 1966, https://doi.org/10.2307/2283712 DOI: https://doi.org/10.2307/2283712
Kitahara, K., On Tchebysheff systems, Proc. Amer. Math. Soc., 105, pp. 412-418, 1989, https://doi.org/10.1090/s0002-9939-1989-0943794-4 DOI: https://doi.org/10.1090/S0002-9939-1989-0943794-4
Kitahara, K., Spaces of Approximating Functions with Haar-like Conditions, Lecture Notes in Mathematics, 1576, Springer, 1994, https://doi.org/10.1006/jath.1995.1101 DOI: https://doi.org/10.1007/BFb0091385
Kitahara, K., Some results related to Descartes' rule of signs, East J. Approx., 14, pp. 467-484, 2008.
Pinkus, A. and Ziegler, Z., Interlacing properties of the zeros of the error functions in best Lp approximations, J. Approx. Theory, 27, pp. 1-18, 1979, https://doi.org/10.1016/0021-9045(79)90093-5 DOI: https://doi.org/10.1016/0021-9045(79)90093-5
Shi, Y. G., The Chebyshev Theory of a variation of L approximation, J. Approx. Theory, 67, pp. 239-251, 1991, https://doi.org/10.1016/0021-9045(91)90001-q DOI: https://doi.org/10.1016/0021-9045(91)90001-Q
Smith, P. W., An improvement theorem for Descartes systems, Proc. Amer. Math. Soc., 70, pp. 26-30, 1978, https://doi.org/10.1090/s0002-9939-1978-0467118-7 DOI: https://doi.org/10.1090/S0002-9939-1978-0467118-7
Zalik, R., Čebyšev and Weak Čebyšev Systems in Total Positivity and Its Applications, M. Gasca and C. A. Micchelli (eds.), Kluwer Academic Publishers, Dordrecht, pp. 301-332, 1996, https://doi.org/10.1007/978-94-015-8674-0_15 DOI: https://doi.org/10.1007/978-94-015-8674-0_15
Zielke, R., Discontinuous Čebyšev Systems, Lecture Notes in Mathematics, 707, Springer, 1979, https://doi.org/10.1007/bfb0071032 DOI: https://doi.org/10.1007/BFb0071032
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.