Korovkin-type convergence results for multivariate Shepard formulae

Authors

  • Oliver Nowak Technical University of Braunschweig, Germany

DOI:

https://doi.org/10.33993/jnaat382-912

Keywords:

Shepard formula, Shepard interpolation, multivariate scattered data interpolation, approximation by positive operators
Abstract views: 213

Abstract

We present a new convergence proof for classic multivariate Shepard formulae within the context of Korovkin-type convergence results for positive operators on spaces of continuous real valued functions.

Downloads

Download data is not yet available.

References

Altomare, F. and Campiti, M., Korovkin-type Approximation Theory and its Applications, Studies in Mathematics, vol. 17, Walter de Gruyter, 1994, https://doi.org/10.1515/9783110884586 DOI: https://doi.org/10.1515/9783110884586

Bohman, H., On approximation of continuous and of analytic functions, Arkiv för Matematik, 2(3), pp. 43-56, 1951, https://doi.org/10.1007/bf02591381 DOI: https://doi.org/10.1007/BF02591381

DeVore, R.A., The Approximation of Continuous Functions by Positive Linear Operators, Lecture Notes in Mathematics, vol. 293, Springer, 1972. DOI: https://doi.org/10.1007/BFb0059493

Farwig, R., Rate of convergence of Shepard's global interpolation formula, Mathematics of Computation, 46(174), pp. 577-590, 1986, https://doi.org/10.2307/2007995 DOI: https://doi.org/10.1090/S0025-5718-1986-0829627-0

Korovkin, P.P., Linear Operators and Approximation Theory, International Monographs on advanced Mathematics & Physics, Hindustan Publishing Corp., India, 1960.

Lancaster, P. and Šalkauskas, K., Surfaces generated by moving least squares methods, Mathematics of Computation, 37(155), pp. 141-158, 1981, https://doi.org/10.2307/2007507 DOI: https://doi.org/10.1090/S0025-5718-1981-0616367-1

Lorentz, G.G., Approximation of Functions, Chelsea Publishing Company, 1986.

Nowak, O., Korovkin-type convergence results for non-positive operators, in preparation.

Nowak, O. and Sonar, Th., Upwind-biased finite difference formulae from moving least squares interpolation, in preparation.

Shepard, D., A two-dimensional interpolation function for irregularly-spaced data, Proc. ACM National Conference, pp. 517-524, 1968. DOI: https://doi.org/10.1145/800186.810616

Sonar, Th., Difference operators from interpolating moving least squares and their deviation from optimality, ESAIM, M2AN, 39(5), pp. 883-908, 2005, https://doi.org/10.1051/m2an:2005039 DOI: https://doi.org/10.1051/m2an:2005039

Downloads

Published

2009-08-01

How to Cite

Nowak, O. (2009). Korovkin-type convergence results for multivariate Shepard formulae. Rev. Anal. Numér. Théor. Approx., 38(2), 170–176. https://doi.org/10.33993/jnaat382-912

Issue

Section

Articles