Extending the collage theorem to contractive like operators
DOI:
https://doi.org/10.33993/jnaat382-913Keywords:
contractive like operatorsAbstract
We generalize the classical "collage'' theorem, due to Barnsley, to contractive like operators.Downloads
References
Barnsley, M. F., Fractals everywhere, New York: Academic Press, 1988.
Berinde, V., On the convergence of the Ishikawa iteration in the class of quasi contractive operators, Acta Math. Univ. Comenianae, Vol. LXXIII, no. 1, pp. 119-126, 2004. DOI: https://doi.org/10.1155/S1687182004311058
Berinde, V., Iterative approximation of fixed points, Springer-Verlag Berlin Heidelberg, 2007. DOI: https://doi.org/10.1109/SYNASC.2007.49
Imoru C.O. and Olatiwo, M.O., On the stability of Picard and Mann iteration processes, Carpathian J. Math., 19, pp. 155-160, 2003.
Kunze H.E. and Vrscay, E.R. Solving inverse problems for ordinary differential equations using the Picard contraction mapping, Inverse Problems, 15, pp. 745-770, 1999, https://doi.org/10.1088/0266-5611/15/3/308 DOI: https://doi.org/10.1088/0266-5611/15/3/308
Kunze, H.E. and Gomes, S., Solving an inverse problem for Urison-type integral equations using Banach's fixed point theorem, Inverse Problems, 19, pp. 411-418, 2003, https://doi.org/10.1088/0266-5611/19/2/310 DOI: https://doi.org/10.1088/0266-5611/19/2/310
Kunze, H.E., Hicken, J.E and Vrscay, E.R., Inverse problems for ODEs using contraction maps and suboptimality for the `collage method', Inverse Problems, 20, 2004, https://doi.org/10.1088/0266-5611/20/3/019 DOI: https://doi.org/10.1088/0266-5611/20/3/019
Osilike, M.O., Stability results for fixed point iteration procedures, J. Nigerian Math. Soc., 14/15, pp. 17-29, 1995/96.
Osilike, M.O., Stability of the Ishikawa iteration method for quasi-contractive maps, Indian J. Pure Appl. Math., 28, no. 9, pp. 1251-1265, 1997.
Rhoades, B.E., Fixed point iterations using infinite matrices, Trans. Amer. Math. Soc., 196, pp. 161-176, 1974, https://doi.org/10.1090/s0002-9947-1974-0348565-1 DOI: https://doi.org/10.1090/S0002-9947-1974-0348565-1
Şoltuz, Ş. M., Solving inverse problems via hemicontractive maps, Nonlinear Analysis, 71, pp. 2387-2390, 2009, https://doi.org/10.1016/j.na.2009.01.071 DOI: https://doi.org/10.1016/j.na.2009.01.071
Şoltuz, S. M., Solving inverse problems via weak-contractive maps, Rev. Anal. Numer. Theor. Approx., 37, No. 2, pp. 217-220, 2008, http://ictp.acad.ro/jnaat/journal/article/view/2008-vol37-no2-art14
Zamfirescu, T., Fixed Point Theorems in metric spaces, Arch. Math., 23, pp. 292-298, 1972. DOI: https://doi.org/10.1007/BF01304884
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.