On the acceleration of the convergence of certain iterative proceedings (II)

Authors

  • Adrian Diaconu Babeş-Bolyai University, Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat391-918

Keywords:

convergence of the approximant sequences for operatorial equations in Banach spaces
Abstract views: 220

Abstract

The research reflected in this paper has its origin in the study of the convergence of the sequences generated through the use of certain methods derived from the well-known Newton-Kantorovich method for the approximation of the solution of an equation in a linear normed space, together with the inverse of the Fréchet differential on this solution. An important place is given in the paper to the notion of convergence speed order of an approximant sequence of the solution of an equation. Considering given an approximant sequence which verifies certain conditions expressed through the inequalities (25), we will build another approximant sequence through the relations (22), sequence which finds its convergence speed order ameliorated. We will analyze certain special cases and, in the same time, we will determine optimal methods from the point of view of the convergence speed order.

Downloads

Download data is not yet available.

References

Diaconu, A., Sur quelques méthodes itératives combinées (I), Mathematica, 22 (45), 2, pp. 247-261, 1980.

Diaconu, A., Sur la manière d'obtenir et sur la convergence de certaines méthdes itératives, "Babeş-Bolyai" University, Faculty of Mathematics, Research Seminaries, Seminar of Functional Analysis and Numerical Methods, Preprint No. 1, pp. 25-74, 1987.

Diaconu, A., Sur quelques procédés itératifs de type Aitken-Steffensen, "Babeş-Bolyai" University, Faculty of Mathematics, Research Seminars, Seminar on Mathematical Analysis Preprint No. 7, pp. 131-150, 1988.

Diaconu, A., Remarks on the convergence of some iterative methods of the Traub type, Studia Universitatis "Babeş-Bolyai", Mathematica, 52, 2, pp. 47-60, 1997.

Diaconu, A., The approximation of the equation's solution in linear normed spaces using approximant sequences (I), Rev. d'Anal. Numérique et de Théorie d'Approx., 32(1), pp. 21-30, 2003, http://ictp.acad.ro/jnaat/journal/article/view/2003-vol32-no1-art3 DOI: https://doi.org/10.33993/jnaat321-731

Diaconu, A., The approximation of the equation's solution in linear normed spaces using approximant sequences (II), Studia Univ. "Babes-Bolyai", Mathematica, Volume XLVIII, March, pp. 55-74, 2003.

Diaconu, A., The acceleration of the convergence of certain approximant sequences, Pure Mathematics and Applications, 11, 2, pp. 187-207, 2000.

Diaconu, A., The acceleration of the convergence of certain approximant sequences of the solutions of certain equations in normed linear spaces, Revue d'Analyse Numérique et de Théorie d'Approximation, 29 (1), pp. 23-41, 2000. DOI: https://doi.org/10.33993/jnaat291-652

Diaconu, A., On the acceleration of the convergence of certaian iterative proceedings, in press.

Kantorovich, L. V., Functional Analysis and Applied mathematics, U.M.N. III, 5, (28), pp. 29-185, 1948 (in Russian).

Kantorovich, L. V., Functional analysis, Editura Ştiinţifică şi Enciclopedică, Bucureşti, 1986 (in Romanian).

Păvăloiu, I., Sur les procédés iteratifs á un ordre élevé de convergence, Mathematica, Cluj, 12 (35), 2, pp. 309-324, 1970.

Păvăloiu, I., Introducere în teoria aproximării soluţiilor ecuaţiilor, Editura Dacia, Cluj-Napoca, 1976 (in Romanian).

Ul'm, S., Ob oteraţionîh mettodah s posledovatel'noi approksimacii obratnovo operatora, Izv. Acad. Nauk Estonskoi S.S.R. 16, 4, pp. 403-411, 1967.

Downloads

Published

2010-02-01

How to Cite

Diaconu, A. (2010). On the acceleration of the convergence of certain iterative proceedings (II). Rev. Anal. Numér. Théor. Approx., 39(1), 32–49. https://doi.org/10.33993/jnaat391-918

Issue

Section

Articles