Sharp bounds for gamma and digamma function arising from Burnside's formula

Authors

  • Cristinel Mortici Valahia University of Târgovişte, Romania

DOI:

https://doi.org/10.33993/jnaat391-920

Keywords:

factorial \(n\), Stirling's formula, Burnside's formula, complete monotonicity, Euler-Mascheroni constant, sharp inequalities
Abstract views: 220

Abstract

The main aim of this paper is to improve the Burnside's formula for approximating the factorial function. We prove the complete monotonicity of a function involving the gamma function to establish new lower and upper sharp bounds for the gamma and digamma function.

Downloads

Download data is not yet available.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1965. DOI: https://doi.org/10.1063/1.3047921

Anderson, G. and Qiu, S., A monotoneity property of the gamma function, Proc. Amer. Math. Soc., 125 (11), pp. 3355-3362, 1997. https://doi.org/10.1090/s0002-9939-97-04152-x DOI: https://doi.org/10.1090/S0002-9939-97-04152-X

Burnside, W., A rapidly convergent series for logN!, Messenger Math., 46, pp. 157-159, 1917.

Guo, B.-N. and Qi, F., An algebraic inequality, II, RGMIA Res. Rep. Coll. 4, no. 1, Art. 8, pp. 55-61, 2001. Available at http://rgmia.vu.edu.au/v4n1.html.

Martins, J. S., Arithmetic and geometric means, an applications to Lorentz sequence spaces, Math. Nachr., 139, pp. 281-288, 1988. https://doi.org/10.1002/mana.19881390125 DOI: https://doi.org/10.1002/mana.19881390125

Minc, H., Sathre, L., Some inequalities involving (n!)1/r, Proc. Edinburgh Math. Soc., 14, pp. 41-46, 1964/65. https://doi.org/10.1017/s0013091500011214 DOI: https://doi.org/10.1017/S0013091500011214

Mortici, C., An ultimate extremely accurate formula for approximation of the factorial function, Arch. Math. (Basel), 93 (2009) no. 1, pp. 37-45. https://doi.org/10.1007/s00013-009-0008-5 DOI: https://doi.org/10.1007/s00013-009-0008-5

O'Connor, J. and Robertson, E. F., James Stirling, MacTutor History of Mathematics Archive.

Qi, F., Three classes of logarithmically completely monotonic functions involving gamma and psi functions, Integral Transforms Spec. Funct., 18 (7), pp. 503-509, 2007. https://doi.org/10.1080/10652460701358976 DOI: https://doi.org/10.1080/10652460701358976

Stirling, J., Methodus differentialis, sive tractatus de summation et interpolation serierum infinitarium, London, 1730. English translation by J. Holliday, The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series.

Widder, D. V., The Laplace Transform, Princeton University Press, Princeton, 1981.

Downloads

Published

2010-02-01

How to Cite

Mortici, C. (2010). Sharp bounds for gamma and digamma function arising from Burnside’s formula. Rev. Anal. Numér. Théor. Approx., 39(1), 69–72. https://doi.org/10.33993/jnaat391-920

Issue

Section

Articles