On the existence and uniqueness of extensions of semi-Hölder real-valued functions

Costică Mustăţa\(^\ast \)

April 13, 2010.

\(^\ast \)“T. Popoviciu” Institute of Numerical Analysis, Cluj-Napoca, Romania, e-mail: cmustata@ictp.acad.ro, cmustata2001@yahoo.com.

Let \((X,d)\) be a quasi-metric space, \(y_0\in X\) a fixed element and \(Y\) a subset of \(X\) such that \(y_0\in Y\). Denote by \((\Lambda _{\alpha ,0}(Y,d),\| \cdot |^{\alpha }_{Y,d})\) the asymmetric normed cone of real-valued \(d\)-semi-H\(\ddot{o}\)lder functions defined on \(Y\) of exponent \(\alpha \in (0,1]\), vanishing in \(y_0\), and by \((\Lambda _{\alpha ,0}(Y,\bar{d}),\| \cdot |^{\alpha }_{Y,\bar{d}})\) the similar cone if \(d\) is replaced by conjugate \(\bar{d}\) of \(d\).

One considers the following claims:

  • For every \(f\) in the linear space \(\Lambda _{\alpha ,0}(Y)=\Lambda _{\alpha ,0}(Y,d)\cap \Lambda _{\alpha ,0}(Y,\bar{d})\) there exist \(F\in \Lambda _{\alpha ,0}(X,d)\) such that \(F|_Y=f\) and \(\| F|^{\alpha }_{Y,d}=\| f|^{\alpha }_{Y,d}\);

  • For every \(f\in \Lambda _{\alpha ,0}(Y)\) there exists \(\bar{F}\in \Lambda _{\alpha ,0}(X,\bar{d})\) such that \(\bar{F}|_Y=f\) and \(\| \bar{F}|^{\alpha }_{Y,\bar{d}}=\| f|^{\alpha }_{Y,\bar{d}}\);

  • The extension \(F\) in \((a)\) is unique;

  • The extension \(\bar{F}\) in \((b)\) is unique;

  • The annihilator \(Y^{\bot }_{\bar{d}}\) of \(Y\) in \(\Lambda _{\alpha ,0}(X,\bar{d})\) is proximinal for the elements of \(\Lambda _{\alpha ,0}(X)\) with respect to the distance generated by \(\| \cdot |^{\alpha }_{Y,d}\);

  • The annihilator \(Y^{\bot }_{d}\) of \(Y\) in \(\Lambda _{\alpha ,0}(X,d)\) is proximinal for the elements of \(\Lambda _{\alpha ,0}(X)\) with respect to the distance generated by \(\| \cdot |^{\alpha }_{Y,\bar{d}}\);

  • \(Y^{\bot }_{\bar{d}}\) in the claim \((e)\) is Chebyshevian;

  • \(Y^{\bot }_{d}\) in the claim \((f)\) is Chebyshevian.

Then the following equivalences hold:
\((a)\Leftrightarrow (e)\); \((b)\Leftrightarrow (f)\); \((c)\Leftrightarrow (g)\); \((d)\Leftrightarrow (h)\).

MSC. 46A22, 41A50, 41A52.

Keywords. Extensions, semi-Lipschitz functions, semi-H\(\ddot{o}\)lder functions, best approximation, quasi-metric spaces

1 Introduction

Let \(X\) be a nonempty set and \(d:X\times X\rightarrow \lbrack 0,\infty )\) a function with the properties:

  • \(d(x,y)=d(y,x)=0\ \)iff \(x=y,\)

  • \(d(x,y)\leq d(x,z)+d(z,y),\)

for all \(x,y,z\in X.\)

Then the function \(d\) is called a quasi-metric on \(X\) and the pair \((X,d)\) is called quasi-metric space ( [ 13 ] ).

Because, in general, \(d(x,y)\neq d(y,x),\) for \(x,y\in X\) one defines the conjugate quasi-metric \(\overline{d}\) of \(d,\) by the equality \(\bar{d}(x,y)=d(y,x),\) for all \(x,y\in X.\)

Let \(Y\) be a nonvoid subset of \((X,d)\) and \(\alpha \in (0,1]\) a fixed number.

Definition 1
  • A function \(f:Y\rightarrow \mathbb {R}\) is called \(d\)-semi-Hölder (of exponent \(\alpha \)) if there exists a constant \(K_{Y}(f)\geq 0\) such that

    \begin{equation} f(x)-f(y)\leq K_{Y}(f)d^{\alpha }(x,y), \label{f.1.1}\end{equation}
    1

    for all \(x,y\in Y.\)

  • \(f:Y\rightarrow \mathbb {R}\) is called \(\overline{d}\)-semi-Hölder (of exponent \(\alpha )\) if there exists a constant \(\overline{K}_{Y}(f)\geq 0\) such that

    \begin{equation} f(x)-f(y)\leq \overline{K}_{Y}(f)\cdot d^{\alpha }(y,x), \label{f.1.2.}\end{equation}
    2

    for all \(x,y\in Y.\)

The smallest constant \(K_{Y}(f)\) in (1) is denoted by \(\left\Vert f\right\vert _{Y,d}^{\alpha }\) and one shows that

\begin{equation} \left\Vert f\right\vert _{Y,d}^{\alpha }:=\sup \left\{ \tfrac {(f(x)-f(y))\vee 0}{d^{\alpha }(x,y)}:d(x,y)>0;x,y\in Y\right\} .\label{f.1.3.}\end{equation}
3

Analogously one defines \(\left\Vert f\right\vert _{Y,\overline{d}}^{\alpha }.\)

Observe that the function \(f\) is \(d\)-semi-Hölder on \(Y\) iff \(-f\) is \(\overline{d}\)-semi-Hölder on \(Y.\) Moreover

\begin{equation} \left\Vert f\right\vert _{Y,d}^{\alpha }=\left\Vert -f\right\vert _{Y,\overline{d}}^{\alpha }. \label{f.1.4.}\end{equation}
4

Definition 2

( [ 14 ] ). Let \((X,d)\) be a quasi-metric space and \(Y\subseteq X\) a nonempty set. The function \(f:Y\rightarrow \mathbb {R}\) is called \(\leq _{d}\)-increasing on \(Y\) if \(f(x)\leq f(y)\) whenever \(d(x,y)=0,\) \(x,y\in Y.\)

The set of all \(\leq _{d}\)-increasing functions on \(Y\) is denoted by \(\mathbb {R}_{\leq _{d}}^{Y}\) and it is a cone in the linear space \(\mathbb {R}^{Y}\) of all real-valued functions on \(Y.\)

The set

\begin{equation} \Lambda _{\alpha }(Y,d):=\{ f\in \mathbb {R}_{\leq _{d}}^{Y};f\ \text{is}\ d\text{-semi-H\"{o}lder and} \ \left\Vert f\right\vert _{Y,d}^{\alpha }<\infty \} \label{f.1.5.}\end{equation}
5

is also a cone, called the cone of \(d\)-semi-Hölder functions on \(Y.\)

If \(y_{0}\in Y\) is arbitrary, but fixed, one considers the cone

\begin{equation} \Lambda _{\alpha ,0}(Y,d):=\{ f\in \Lambda _{\alpha }(Y,d):f(y_{0})=0\} .\label{f.1.6}\end{equation}
6

Then the functional \(\left\Vert \ \right\vert _{Y,d}^{\alpha }:\Lambda _{\alpha ,0}(Y,d)\rightarrow \lbrack 0,\infty )\) is subadditive, positively homogeneous and the equality \(\left\Vert f\right\vert _{Y,d}^{\alpha }=\left\Vert -f\right\vert _{Y,d}^{\alpha }=0\ \)implies\(\ f\equiv 0.\ \)This means that \(\left\Vert \cdot \right\vert _{Y,d}^{\alpha }\) is an asymmetric norm (see [ 13 ] , [ 14 ] ), on the cone \(\Lambda _{\alpha ,0}(Y,d)\).

The pair \(\left( \Lambda _{\alpha ,0}(Y,d),\left\Vert \ \right\vert _{Y,d}^{\alpha }\right) \) is called the asymmetric normed cone of \(d\)-semi-Hölder real-valued function on \(Y\) (compare with [ 14 ] ).

Analogously, one defines the asymmetric normed cone \((\Lambda _{\alpha ,0}(Y,\overline{d}),\| \cdot | ^{\alpha }_{Y,\overline{d}}). \) of all \(\overline{d}\)-semi-Hölder real-valued functions on \(Y\), vanishing at the fixed point \(y_{0}\in Y.\)

By the above definitions it follows that

\[ f\in (\Lambda _{\alpha ,0}(Y,d),\left\Vert \ \right\vert _{Y,d}^{\alpha })\ \text{iff\ }-f\in (\Lambda _{\alpha ,0}(Y,\overline{d}),\left\Vert \ \right\vert _{Y,\overline{d}}^{\alpha }) \]

and, moreover, \(\left\Vert f\right\vert _{Y,d}^{\alpha }=\left\Vert -f\right\vert _{Y,\overline{d}}^{\alpha }.\)

Defining \(\Lambda _{\alpha ,0}(Y)\) by

\begin{equation} \Lambda _{\alpha ,0}(Y)=\Lambda _{\alpha ,0}(Y,d)\cap \Lambda _{\alpha ,0}(Y,\overline{d}),\label{f.1.7}\end{equation}
7

It follows that \(\Lambda _{\alpha ,0}(Y)\) is a linear subspace. The following, theorem holds.

Theorem 3

For every \(f\in \Lambda _{\alpha ,0}(Y)\) there exist at least one function \(F\in \Lambda _{\alpha ,0}(Y,d)\) and at least one function \(\overline{F}\in \Lambda _{\alpha ,0}(Y,\overline{d})\) such that

  • \(\left. F\right\vert _{Y}=\) \(\left. \overline{F}\right\vert _{Y}=f.\)

  • \(\left\Vert F\right\vert _{Y,d}^{\alpha }=\left\Vert f\right\vert _{Y,d}^{\alpha }\) and \(\left\Vert \overline{F}\right\vert _{Y,\overline{d}}^{\alpha }=\left\Vert f\right\vert _{Y,\overline{d}}^{\alpha }.\)

Proof â–¼
By Theorem 2 and Remark 3 in [ 11 ] it follows that the functions defined by the formulae:
\begin{align} F(f)(x) & =\inf _{y\in Y}\{ f(y)+\left\Vert f\right\vert _{Y,d}^{\alpha }d^{\alpha }(x,y)\} ,\ x\in X,\label{f.1.8}\\ G(f)(x) & =\sup _{y\in Y}\{ f(y)-\left\Vert f\right\vert _{Y,d}^{\alpha }d^{\alpha }(y,x\} ,\ x\in X,\nonumber \end{align}

are elements of \(\Lambda _{\alpha ,0}(X,d)\) and, respectively, the functions given by

\begin{align} \overline{F}(f)(x) & =\inf _{y\in Y}\{ f(y)+\left\Vert f\right\vert _{Y,\overline{d}}^{\alpha }d^{\alpha }(y,x)\} ,\ x\in X,\label{f.1.9}\\ \overline{G}(f)(x) & =\sup _{y\in Y}\{ f(y)-\left\Vert f\right\vert _{Y,\overline{d}}^{\alpha }d^{\alpha }(x,y)\} ,\ x\in X\nonumber \end{align}

are elements of \(\Lambda _{\alpha ,0}(X,\overline{d})\) such that

\begin{equation} \left. F(f)\right\vert _{Y}=\left. G(f)\right\vert _{Y}=f\ \text{and\ }\left\Vert F(f)\right\vert _{Y,d}^{\alpha }=\left\Vert G(f)\right\vert _{Y,d}^{\alpha }=\left\Vert f\right\vert _{Y,d}^{\alpha },\label{f.1.10}\end{equation}
10

respectively

\begin{equation} \left. \overline{F}(f)\right\vert _{Y}=\left. \overline{G}(f)\right\vert _{Y}=f\ \text{and\ }\left\Vert \overline{F}(f)\right\vert _{Y,\overline{d}}^{\alpha }=\left\Vert \overline{G}(f)\right\vert _{Y,\overline{d}}^{\alpha }=\left\Vert f\right\vert _{Y,\overline{d}}^{\alpha }.\label{f.1.11}\end{equation}
11

For \(f\in \Lambda _{\alpha ,0}(Y)\) let us consider the following (nonempty) sets of extensions:

\begin{equation} \mathcal{E}_{d}(f):=\{ H\in \Lambda _{\alpha ,0}(X,d):\left. H\right\vert _{Y}=f\ \text{and }\left\Vert H\right\vert _{Y,d}^{\alpha }=\left\Vert f\right\vert _{Y,d}^{\alpha }\} \label{f.1.12}\end{equation}
12

and

\begin{equation} \mathcal{E}_{\overline{d}}(f):=\{ \overline{H}\in \wedge _{\alpha ,0}(X,\overline{d}):\left. \overline{H}\right\vert _{Y}=f\ \text{and\ }\left\Vert \overline{H}\right\vert _{Y,\overline{d}}^{\alpha }=\left\Vert f\right\vert _{Y,\overline{d}}^{\alpha }\} .\label{f.1.13}\end{equation}
13

The sets \(\mathcal{E}_{d}(f)\) and \(\mathcal{E}_{\overline{d}}(f)\) are convex and

\begin{equation} F(f)(x)\geq H(x)\geq G(f)(x),\ x\in X\label{f.1.14}\end{equation}
14

for all \(H\in \mathcal{E}_{d}(f);\)

\begin{equation} \overline{F}(f)(x)\geq \overline{H}(x)\geq \overline{G}(f)(x),\ x\in H,\label{f.1.15}\end{equation}
15

for all \(\overline{H}\in \mathcal{E}_{\overline{d}}(f)\).

Also, for \(F\in \Lambda _{\alpha ,0}(X),\) \(\left. F\right\vert _{Y}\in \Lambda _{\alpha ,0}(Y)\) and

\begin{align*} F-H & \in \Lambda _{\alpha ,0}(X,\overline{d}),\ \text{for all }H\in \mathcal{E}_{d}(\left. F\right\vert _{Y}),\\ F-\overline{H} & \in \Lambda _{\alpha ,0}(X,d)\ \text{for all }\overline{H}\in \mathcal{E}_{\overline{d}}(\left. F\right\vert _{Y}). \end{align*}

Let \((X,d)\) be a quasi-metric space, \(y_{0}\in X\) fixed and \(Y\subseteq X\) such that \(y_{0}\in Y.\) Let

\begin{equation} Y_{d}^{\perp }:=\{ G\in \Lambda _{\alpha ,0}(X,d):\left. G\right\vert _{Y}=0\} \label{f.1.16}\end{equation}
16

and

\begin{equation} Y_{\overline{d}}^{\perp }:=\{ \overline{G}\in \wedge _{\alpha ,d}(X,\overline{d}):\left. \overline{G}\right\vert _{Y}=0\} .\label{f.1.17}\end{equation}
17

Obviously, for \(F\in \Lambda _{\alpha ,0}(X)\)

\begin{equation} F-\mathcal{E}_{d}(\left. F\right\vert _{Y})\subset \Lambda _{\alpha ,0}(X,\overline{d})\label{f.1.18}\end{equation}
18

and

\begin{equation} F-\mathcal{E}_{\overline{d}}(\left. F\right\vert _{Y})\subset \Lambda _{\alpha ,0}(X,d).\label{f.1.19}\end{equation}
19

In the sequel we prove a result of Phelps type ( [ 1 ] , [ 10 ] , [ 12 ] ) concerning the existence and uniqueness of the extensions preserving the smallest semi-Hölder constants and a problem of best approximation by elements of \(Y_{d}^{\perp }\) and \(Y_{\overline{d}}^{\perp },\) respectively.

Let \((X,\left\Vert \ \right\vert )\) be an asymmetric norm (see [ 13 ] , [ 14 ] ) and let \(M\) be a nonempty set of \(X.\) The set \(M\) is called proximinal for \(x\in X\) iff there exists at least one element \(m_{0}\in M\) such that

\[ \left\Vert x-m_{0}\right\vert =\inf \{ \left\Vert x-m\right\vert :m\in M\} =\rho (x,M). \]

If \(M\) is proximinal for \(x,\) then the set \(P_{M}(x)=\{ m_{0}\in M:\left\Vert x-m_{0}\right\vert =\rho (x,M)\} \) is called the set of elements of best approximations for \(x\) in \(M.\) If card \(P_{M}(x)=1\) then the set \(M\) is called Chebyshevian for \(x.\)

The set \(M\) is called proximinal if \(M\) is proximinal for every \(x\in X,\) and Chebyshevian if \(M\) is Chebyshevian for every \(x\in X.\)

Now, consider the following two problems of best approximation:

P\(_{\overline{\text{d}}}\)(F). For \(F\in \Lambda _{\alpha ,0}(X)\) find \(G_{0}\in Y_{d}^{\perp }\) such that

\begin{equation} \left\Vert F-G_{0}\right\vert _{Y,\overline{d}}^{\alpha }=\inf \{ \left\Vert F-G\right\vert _{Y,\overline{d}}^{\alpha }:G\in Y_{d}^{\perp }\} =\rho _{\overline{d}}(F,Y_{d}^{\perp })\label{f.1.20}\end{equation}
20

and

P\(_{\text{d}}\)(F). For \(F\in \Lambda _{\alpha ,0}(X)\) find \(\overline{G}_{0}\in Y_{\overline{d}}^{\perp }\) such that

\begin{equation} \left\Vert F-\overline{G}_{0}\right\vert _{Y,d}^{\alpha }=\inf \{ \left\Vert F-\overline{G}\right\vert _{X,d}^{\alpha }:\overline{G}\in Y_{\overline{d}}^{\perp }\} =\rho _{d}(F,Y_{\overline{d}}^{\perp }).\label{f.1.21}\end{equation}
21

Let

\begin{equation} P_{Y_{\overline{d}}^{\perp }}(F):=\{ \overline{G}_{0}\in Y_{\overline{d}}^{\perp }:\left\Vert F-\overline{G}_{0}\right\vert _{X,d}^{\alpha }=\rho _{d}(F,Y_{\overline{d}}^{\perp })\} \label{f.1.22}\end{equation}
22

and

\begin{equation} P_{Y_{d}^{\perp }}(F):=\{ G_{0}\in Y_{d}^{\perp }:\left\Vert F-G_{0}\right\vert _{X,\overline{d}}^{\alpha }=\rho _{\overline{d}}(F,Y_{d}^{\perp })\} .\label{f.1.23}\end{equation}
23

The following theorem holds.

Theorem 4

If \(F\in \Lambda _{\alpha ,0}(X)\) then

\begin{equation} P_{Y_{\overline{d}}^{\perp }}(F)=F-\mathcal{E}_{d}(\left. F\right\vert _{Y}),\label{f.1.24}\end{equation}
24

\begin{equation} P_{Y_{d}^{\perp }}(F)=F-\mathcal{E}_{\overline{d}}(\left. F\right\vert _{Y})\label{f.1.25}\end{equation}
25

and

\begin{equation} \rho _{d}(F,Y_{\overline{d}}^{\perp })=\left\Vert F\right\vert _{Y}\left\vert _{Y,d}^{\alpha }\right. ,\label{f.1.26}\end{equation}
26

\begin{equation} \rho _{\overline{d}}(F,Y_{d}^{\perp })=\left\Vert F\right\vert _{Y}\left\vert _{Y,\overline{d}}^{\alpha }\right. \ .\label{f.1.27}\end{equation}
27

Proof â–¼
Let \(F\in \Lambda _{\alpha ,0}(X)(=\Lambda _{\alpha ,0}(X,d)\cap \Lambda _{\alpha ,0}(X,\overline{d}))\)

Then, for every \(\overline{G}\in Y_{\overline{d}}^{\perp },\)

\[ \left\Vert F\right\vert _{Y}\left\vert _{Y,d}^{\alpha }\right. =\left\Vert F\right\vert _{Y}-\left. \overline{G}\right\vert _{Y}\left\vert _{Y,d}^{\alpha }\right. \leq \left\Vert F-\overline{G}\right\vert _{X,d}^{\alpha }. \]

Taking the infimum with respect to \(\overline{G}\in Y_{\overline{d}}^{\perp },\) one obtains \(\left\Vert F\right\vert _{Y}| _{Y,d}^{\alpha } \leq \rho _{d}(F,Y_{\overline{d}}^{\perp }).\) On the other hand, for every \(H\in \mathcal{E}_{d}(\left. F\right\vert _{Y}),\)

\[ \left\Vert F\right\vert _{Y}\left\vert _{Y,d}^{\alpha }\right. =\left\Vert H\right\vert _{X,d}^{\alpha }=\left\Vert F-(F-H)\right\vert _{X,d}^{\alpha }. \]

Because \(F-H\in Y_{\overline{d}}^{\perp },\) it follows \(\left\Vert F\right\vert _{Y}| _{Y,d}^{\alpha } \geq \rho _{d}(F,Y_{d}^{\perp }).\)

Consequently, \(Y_{\overline{d}}^{\perp }\) is proximinal with respect to the distance \(\rho _{d}\) (\(\rho _{d}\)-proximinal in short) and

\[ \rho _{d}(F,Y_{\overline{d}}^{\perp })=\left\Vert F\right\vert _{Y}\left\vert _{Y,d}^{\alpha }\right. . \]

    Now, let \(\overline{G}_{0}\in P_{Y_{\overline{d}}^{\perp }}(F).\) Then \((F-\overline{G}_{0})\left\vert _{Y}\right. =\left. F\right\vert _{Y}\) and \(\left\Vert F-\overline{G}_{0}\right\vert _{X,d}^{\alpha }=\left\Vert F\right\vert _{Y}| _{Y,d}^{\alpha }.\) This means that \(F-\overline{G}_{0}\in \mathcal{E}_{d}(\left. F\right\vert _{Y}),\) i.e., \(\overline{G}_{0}\in F-\mathcal{E}_{d}(\left. F\right\vert _{Y}).\) Consequently, \(\overline{G}_{0}\in P_{Y_{\overline{d}}^{\perp }}(F)\) implies \(\overline{G}_{0}\in F-\mathcal{E}_{d}(\left. F\right\vert _{Y}).\)

Taking into account the first part of the proof it follows \(P_{Y_{\overline{d}}^{\perp }}(F)=F-\mathcal{E}_{d}(\left. F\right\vert _{Y}).\)

Analogously, one obtains \(\rho _{\overline{d}}(F,Y_{d}^{\perp })=\left\Vert F\right\vert _{Y}| _{Y,\overline{d}}^{\alpha }\) and \(P_{Y_{d}^{\perp }}(F)=F-\mathcal{E}_{\overline{d}}(\left. F\right\vert _{Y}). \)

By the equalities (22) and (23) it follows.

Corollary 5

Let \(F\in \Lambda _{\alpha ,0}(X)\) and \(Y\subset X\) such that \(y_{0}\in Y.\) Then

  • card \(\mathcal{E}_{d}(\left. F\right\vert _{Y})=1\) iff \(Y_{\overline{d}}^{\perp }\) is \(\rho _{d}\)-Chebyshevian;

  • card \(\mathcal{E}_{\overline{d}}(\left. F\right\vert _{Y})=1\) iff \(Y_{d}^{\perp }\) is \(\rho _{\overline{d}}\)-Chebyshevian.

Remark 6

Observe that the linear space \(\Lambda _{\alpha ,0}(X)=\Lambda _{\alpha ,0}(X,d)\cap \Lambda _{\alpha ,0}(X,\overline{d})\) is a Banach space with respect to the norm

\begin{equation} \left\Vert F\right\vert _{X}^{\alpha }=\max \{ \left\Vert F\right\vert _{X,d}^{\alpha },\left\Vert F\right\vert _{X,\overline{d}}^{\alpha }\} .\label{f.1.28}\end{equation}
28

In fact this space in the space of all real-valued Lipschitz functions defined on the quasi-metric space \((X,d^{\alpha }),\) vanishing at a fixed point \(y_{0}\in X.\) Obviously,

\begin{equation} \left\Vert F\right\Vert _{X}^{\alpha }=\sup \left\{ \tfrac {\left\vert F(x)-F(y)\right\vert }{d^{\alpha }(x,y)}:d(x,y)>0;\ x,y\in X\right\} \label{f.1.29}\end{equation}
29

is a norm on \(\Lambda _{\alpha ,0}(X).\)â–¡

Corollary 7

For every element \(f\) in the space \(\Lambda _{\alpha ,0}(Y)=\Lambda _{\alpha ,0}(Y,d)\cap \Lambda _{\alpha ,0}(Y,\overline{d})\) there exists \(F\in \Lambda _{\alpha ,0}(X)\) such that

\[ \left. F\right\vert _{Y}=f\ \text{and }\left\Vert F\right\Vert _{X}^{\alpha }=\left\Vert f\right\Vert _{Y}^{\alpha }. \]

The set of all extensions of \(f\in \Lambda _{\alpha ,0}(Y)\) preserving the norm \(\left\Vert f\right\Vert _{Y}^{\alpha }\) (of the form (29), is denoted by \(\mathcal{E}(f),\) i.e.,

\begin{equation} \mathcal{E(}f\mathcal{)}:\mathcal{=\{ }F\mathcal{\in }\Lambda _{\alpha ,0}(X):\left. F\right\vert _{Y}=f\ \text{and }\left\Vert F\right\Vert _{X}^{\alpha }=\left\Vert f\right\Vert _{Y}^{\alpha }\} .\label{f.1.30}\end{equation}
30

Denote by

\begin{equation} Y^{\perp }:=\{ G\in \Lambda _{\alpha ,0}(X):\left. G\right\vert _{Y}=0\} .\label{f.1.31}\end{equation}
31

the annihilator of the set \(Y\) in Banach space \(\Lambda _{\alpha ,0}(X),\) and one considers the following problem of best approximation:

P. For \(F\in \Lambda _{\alpha ,0}(X)\) find \(G_{0}\in Y^{\perp }\) such that

\[ \left\Vert F-G_{0}\right\Vert _{X}^{\alpha }=\inf \{ \left\Vert F-G\right\Vert _{X}^{\alpha }:G\in Y^{\perp }\} =\rho (F,Y^{\perp }). \]

Corollary 8

The subspace \(Y^{\perp }is\) proximinal in \(\Lambda _{\alpha ,0}(X)\) and the set of elements of best approximation for \(F\in \Lambda _{\alpha ,0}(X)\) is

\[ P_{Y^{\perp }}(F)=F-\mathcal{E(}\left. F\right\vert _{Y}). \]

The distance of \(F\) to \(Y^{\perp }\) is given by

\[ \rho (F,Y^{\perp })=\left\Vert F\right\vert _{Y}\left\Vert _{Y}^{\alpha }\right. . \]

The subspace \(Y^{\perp }\) is Chebyshevian for \(F\) iff card \(\mathcal{E(}\left. F\right\vert _{Y})=1.\)

For \(f\) in the linear space \(\Lambda _{\alpha ,0}(Y),\) the equalities \(F(f)(x)=\overline{F}(f)(x),\) \(x\in X\) and \(G(f)(x)=\overline{G}(f)(x),\) \(x\in X\) are verified iff \(\left\Vert f\right\vert _{Y,d}^{\alpha }=\left\Vert f\right\vert _{Y,\overline{d}}^{\alpha }.\) This means that \(\left\Vert f\right\vert _{Y,d}^{\alpha }=\left\Vert -f\right\vert _{Y,d}^{\alpha }\) and, consequently,

\[ \left\Vert f\right\Vert _{Y}^{\alpha }=\max \{ \left\Vert f\right\vert _{Y,d}^{\alpha };\left\Vert f\right\vert _{Y,\overline{d}}^{\alpha }\} =\left\Vert f\right\vert _{Y,d}^{\alpha }. \]

By Theorem 3 in [ 14 ] , it follows that \(\Lambda _{a,0}(Y)\) is a Banach space and \((Y,d^{\alpha })\) is a metric space.

Bibliography

1

S. Cobzaş, Phelps type duality reuslts in best approximation, Rev. Anal. Numér. Théor. Approx., 31, no. 1., pp. 29–43, 2002. \includegraphics[scale=0.1]{ext-link.png}

2

J. Collins and J. Zimmer, An asymmetric Arzelā-Ascoli Theorem, Topology Appl., 154, no. 11, pp. 2312–2322, 2007.

3

P. Flecther and W.F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.

4

M.G. Krein and A.A. Nudel’man, The Markov Moment Problem and Extremum Problems, Nauka, Moscow 1973 (in Russian), English translation: American Mathematical Society, Providence, R.I., 1977.

5

E. Matouškova, Extensions of continuous and Lipschitz functions, Canad. Math. Bull., 43, no. 2, pp. 208–217, 2000.

6

E.T. McShane, Extension of range of functions, Bull. Amer. Math. Soc., 40, pp. 837–842, 1934.

7

A. Mennucci, On asymmetric distances, Tehnical report, Scuola Normale Superiore, Pisa, 2004.

8

C. Mustăţa, Best approximation and unique extension of Lipschitz functions, J. Approx. Theory, 19, no. 3, pp. 222–230, 1977.

9

C. Mustăţa, Extension of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numér. Théor. Approx., 30, no. 1, pp. 61–67, 2001. \includegraphics[scale=0.1]{ext-link.png}

10

C. Mustăţa, A Phelps type theorem for spaces with asymmetric norms, Bul. Ştiinţ. Univ. Baia Mare, Ser. B. Matematică-Informatică, 18, pp. 275–280, 2002.

11

C. Mustăţa, Extensions of semi-Hölder real valued functions on a quasi-metric space, Rev. Anal. Numér. Théor. Approx., 38, no. 2, pp. 164–169, 2009. \includegraphics[scale=0.1]{ext-link.png}

12

R.R. Phelps, Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Numer. Math. Soc., 95, pp. 238–255, 1960.

13

S. Romaguera and M. Sanchis, Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103, pp. 292–301, 2000.

14

S. Romaguera and M. Sanchis, Properties of the normed cone of semi-Lipschitz functions, Acta Math. Hungar, 108, nos. 1–2, pp. 55–70, 2005.

15

J.H. Wells and L.R. Williams, Embeddings and Extensions in Analysis, Springer-Verlag, Berlin, 1975.