Inverse problems via generalized contractive type operators

Authors

  • Ştefan M. Şoltuz Tiberiu Popoviciu Institute of Numerical Analysis, Romania

DOI:

https://doi.org/10.33993/jnaat392-1036

Keywords:

generalized contractive type operators
Abstract views: 263

Abstract

We prove a "collage'' theorem for a generalized contractive type operators.

Downloads

Download data is not yet available.

References

M.F. Barnsley, Fractals everywhere, New York, Academic Press, 1988.

H.E. Kunze and E.R. Vrscay, Solving inverse problems for ordinary differential equations using the Picard contraction mapping, Inverse Problems, 15, pp. 745-770, 1999, https://doi.org/10.1088/0266-5611/15/3/308 DOI: https://doi.org/10.1088/0266-5611/15/3/308

H.E. Kunze and S. Gomes, Solving an inverse problem for Urison-type integral equations using Banach's fixed point theorem, Inverse Problems, 19, pp. 411-418, 2003, https://doi.org/10.1088/0266-5611/19/2/310 DOI: https://doi.org/10.1088/0266-5611/19/2/310

H.E. Kunze, J.E. Hicken and E.R. Vrscay, Inverse problems for ODEs using contraction maps and suboptimality for the 'collage method', Inverse Problems, 20, pp. 977-991, 2004, https://doi.org/10.1088/0266-5611/20/3/019 DOI: https://doi.org/10.1088/0266-5611/20/3/019

Ş.M. Şoltuz, Solving inverse problems via hemicontractive maps, Nonlinear Analysis, textbf71, pp. 2387-2390, 2009, https://doi.org/10.1016/j.na.2009.01.071 DOI: https://doi.org/10.1016/j.na.2009.01.071

Ş.M. Şoltuz, Solving inverse problems via weak-contractive maps, Rev. Anal. Numer. Theor. Approx., 37, no. 2, pp. 217-220, 2008.

Downloads

Published

2010-08-01

How to Cite

Şoltuz, Ştefan M. (2010). Inverse problems via generalized contractive type operators. Rev. Anal. Numér. Théor. Approx., 39(2), 164–168. https://doi.org/10.33993/jnaat392-1036

Issue

Section

Articles