An optimal double inequality among the one-parameter, arithmetic and harmonic means

Authors

  • Wang Miao-Kun Huzhou Teachers College, China
  • Qiu Ye-Fang Huzhou Teachers College, China
  • Chu Yu-Ming Huzhou Teachers College, China

DOI:

https://doi.org/10.33993/jnaat392-1037

Keywords:

one-parameter mean, arithmetic mean, harmonic mean
Abstract views: 237

Abstract

For pR, the one-parameter mean Jp(a,b), arithmetic mean A(a,b), and harmonic mean H(a,b) of two positive real numbers a and b are defined byJp(a,b)={p(ap+1bp+1)(p+1)(apbp),ab,p0,1,ablogalogb,ab,p=0,ab(logalogb)ab,ab,p=1,a,a=b,A(a,b)=a+b2, and H(a,b)=2aba+b,respectively. In this paper, we answer the question: For α(0,1), what are the greatest value r1 and the least value r2 such that the double inequality Jr1(a,b)<αA(a,b)+(1α)H(a,b)<Jr2(a,b) holds for all a,b>0 with ab?

Downloads

References

H. Alzer, On Stolarsky's mean value family, Internat. J. Math. Ed. Sci. Tech., 20(1), pp. 186-189, 1987.

H. Alzer, Über eine einparametrige Familie Von Mittelwerten, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber., 1987, pp. 1-9, 1988.

H. Alzer, Über eine einparametrige Familie Von Mittelwerten II, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber., 1988, pp. 23-29, 1989.

F. Qi, The extended mean values: definition, properties, monotonicities, comparison, convexities, generalizations, and applications, Cubo Math. Educ., 5(3), pp. 63-90, 2003.

W.-S. Cheung and F. Qi, Logarithmic convexity of the one-parameter mean values, Taiwanese J. Math., 11(1), pp. 231-237, 2007, https://doi.org/10.11650/twjm/1500404648 DOI: https://doi.org/10.11650/twjm/1500404648

F. Qi, P. Cerone, S.S. Dragomir and H.M. Srivastava, Alternative proofs for monotonic and logarithmically convex properties of one-parameter mean values, Appl. Math. Comput., 208(1), pp. 129-133, 2009, https://doi.org/10.1016/j.amc.2008.11.023 DOI: https://doi.org/10.1016/j.amc.2008.11.023

N.-G. Zheng, Z.-H. Zhang and X.-M. Zhang, Schur-convexity of two types of one-parameter mean values in n variables, J. Inequal. Appl., Art. ID 78175, 10 pages, 2007, https://doi.org/10.1155/2007/78175. DOI: https://doi.org/10.1155/2007/78175

P.S. Bullen, D.S. Mitrinović and P.M. Vasić, Means and Their Inequalities, D. Reidel Pubishing Co., Dordrecht, 1988. DOI: https://doi.org/10.1007/978-94-017-2226-1

H. Alzer and W. Janous, Solution of problem 8^{∗}, Crux Math., 13, pp. 173-178, 1987, https://doi.org/10.1007/bf01436200 DOI: https://doi.org/10.1007/BF01436200

Q.-J. Mao, Power mean, logarithmic mean and Heronian dual mean of two positive number, J. Suzhou Coll. Edu., 16(1-2), pp. 82-85, 1999.

Downloads

Published

2010-08-01

Issue

Section

Articles

How to Cite

Miao-Kun, W., Ye-Fang, Q., & Yu-Ming, C. (2010). An optimal double inequality among the one-parameter, arithmetic and harmonic means. Rev. Anal. Numér. Théor. Approx., 39(2), 169-175. https://doi.org/10.33993/jnaat392-1037