Newton's method and regularly smooth operators

Authors

  • Ioannis K. Argyros Cameron University, USA

DOI:

https://doi.org/10.33993/jnaat401-946

Keywords:

Newton's method, Banach space, majorizing sequence, regularly smooth operators, Fréchet-derivative, semilocal convergence, integral equation, radiative transfer, Newton-Kantorovich hypothesis
Abstract views: 249

Abstract

A semilocal convergence analysis for Newton's method in a Banach space setting is provided in this study. Using a combination of regularly smooth and center regularly smooth conditions on the operator involved, we obtain more precise majorizing sequences than in [7]. It then follows that under the same computational cost and the same or weaker hypotheses than in [7] the following benefits are obtained: larger convergence domain; finer estimates on the distances involved, and an at least as precise information on the location of the solution of the corresponding equation. Numerical examples are given to further validate the results obtained in this study.

Downloads

Download data is not yet available.

References

Appel, J., DePascale, E., Lysenko, J.V. and Zabrejko, P.P., New results on Newton-Kantorovich approximations with applications to nonlinear integral equations, Numer. Funct. Anal. and Optim., 18, nos. 1-2, pp. 1-17, 1997. https://doi.org/10.1080/01630569708816744 DOI: https://doi.org/10.1080/01630569708816744

Argyros, I.K., Quadratic equations and applications to Chandrasekhar's and related equations, Bull. Austral. Math. Soc., 32, pp. 275-292, 1985. https://doi.org/10.1017/s0004972700009953 DOI: https://doi.org/10.1017/S0004972700009953

Argyros, I.K., On the Newton Kantorovich hypothesis for solving equations, J. Comput. Appl. Math., 11, no. 1, pp. 103-110, 2004.

Argyros, I.K., A unifying local-semilocal convergence analysis, and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Applic., 298, pp. 374-397, 2004. https://doi.org/10.1016/j.jmaa.2004.04.008 DOI: https://doi.org/10.1016/j.jmaa.2004.04.008

Argyros, I.K., Computational theory of iterative methods, Series: Computational Mathematics, 15, Editors, C.K.Chui and L. Wuytack, Elsevier Publ., New York, U.S.A., 2007.

Chandrasekhar, S., Radiative transfer, Dover Publ., 1982.

Galperin, A. and Waksman, Z., Regular smoothness and Newton's method, Numer. Funct. Anal. and Optimiz., 15, nos.7-8, pp. 813-858, 1994. https://doi.org/10.1080/01630569408816595 DOI: https://doi.org/10.1080/01630569408816595

Gutierrez, T.M., Hernandez, M.A. and Salanova, M.A., Accesibility of solutions by Newton's method, Intern. J. Comput. Math., 57, pp. 239-247, 1995. https://doi.org/10.1080/00207169508804427 DOI: https://doi.org/10.1080/00207169508804427

Kantorovich, L.V. and Akilov, G.P., Functional analysis in normed spaces, Pergamon Press, Oxford, 1982. DOI: https://doi.org/10.1016/B978-0-08-023036-8.50010-2

Potra, F.A. and Ptak, V., Nondiscrete induction and iterative processes, Pitman. Publ., London, 1983.

Rockafellar, R.T., Convex analysis, Princeton University Press, Prinseton, 1967.

Zabrejko, P.P. and Nguyen, D.F., The majorant method in the theory of Newton-Kantorovich approximations and the Ptak error estimates, Numer. Funct. Anal. and Optim., 9, pp. 671-684, 1987. https://doi.org/10.1080/01630568708816254 DOI: https://doi.org/10.1080/01630568708816254

Downloads

Published

2011-02-01

How to Cite

Argyros, I. K. (2011). Newton’s method and regularly smooth operators. Rev. Anal. Numér. Théor. Approx., 40(1), 3–13. https://doi.org/10.33993/jnaat401-946

Issue

Section

Articles