Trapezoidal operator preserving the expected interval and the support of fuzzy numbers
DOI:
https://doi.org/10.33993/jnaat401-948Keywords:
fuzzy number, trapezoidal fuzzy number, trapezoidal approximationAbstract
The problem to find the trapezoidal fuzzy number which preserves the expected interval and the support of a given fuzzy number is discussed. Properties of this new trapezoidal approximation operator are studied.Downloads
References
Allahviranloo, T. and Adabitabar Firozja, M., Note on trapezoidal approximation of fuzzy numbers, Fuzzy Sets and Systems, 158, pp. 755-756, 2007, https://doi.org/10.1016/j.fss.2006.10.017 DOI: https://doi.org/10.1016/j.fss.2006.10.017
Ban, A., Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the expected value, Fuzzy Sets and Systems, 159, pp. 1327-1344, 2008, https://doi.org/10.1016/j.fss.2007.09.008 DOI: https://doi.org/10.1016/j.fss.2007.09.008
Ban, A., Triangular and parametric approximations of fuzzy numbers-inadvertences and corrections, Fuzzy Sets and Systems, 160, pp. 3048-3058, 2009, https://doi.org/10.1016/j.fss.2009.04.003 DOI: https://doi.org/10.1016/j.fss.2009.04.003
Ban, A., On the nearest parametric approximation of a fuzzy number - Revisited, Fuzzy Sets and Systems, 160, pp. 3027-3047, 2009, https://doi.org/10.1016/j.fss.2009.05.001 DOI: https://doi.org/10.1016/j.fss.2009.05.001
Bodjanova, S., Median value interval of a fuzzy number, Information Sciences, 172, pp. 73-89, 2005, https://doi.org/10.1016/j.ins.2004.07.018 DOI: https://doi.org/10.1016/j.ins.2004.07.018
Chanas, S., On the interval approximation of a fuzzy number, Fuzzy Sets and Systems, 122, pp. 353-356, 2001, https://doi.org/10.1016/s0165-0114(00)00080-4 DOI: https://doi.org/10.1016/S0165-0114(00)00080-4
Delgado, M., Vila, M. A. and Voxman, W., On a canonical representation of fuzzy numbers, Fuzzy Sets and Systems, 93, pp. 125-135, 1998, https://doi.org/10.1016/s0165-0114(96)00144-3 DOI: https://doi.org/10.1016/S0165-0114(96)00144-3
Diamond, P. and Kloeden, P., Metric Spaces of Fuzzy Sets. Theory and Applications, World Scientific, Singapore 1994. DOI: https://doi.org/10.1142/2326
Dubois, D. and Prade, H., Operations on fuzzy numbers, Internat. J. Systems Sci, 9, pp. 613-626, 1978, https://doi.org/10.1080/00207727808941724 DOI: https://doi.org/10.1080/00207727808941724
Dubois, D. and Prade, H., The mean value of a fuzzy number, Fuzzy Sets and Systems, 24, pp. 279-300, 1987, https://doi.org/10.1016/0165-0114(87)90028-5 DOI: https://doi.org/10.1016/0165-0114(87)90028-5
Grzegorzewski, P., Metrics and orders of fuzzy numbers, Fuzzy Sets and Systems, 97, pp. 83-94, 1998. https://doi.org/10.1016/s0165-0114(96)00322-3 DOI: https://doi.org/10.1016/S0165-0114(96)00322-3
Grzegorzewski, P. and Mrowka, E., Trapezoidal approximations of fuzzy numbers, Fuzzy Sets and Systems, 153, pp. 115-135, 2005, https://doi.org/10.1016/j.fss.2004.02.015 DOI: https://doi.org/10.1016/j.fss.2004.02.015
Grzegorzewski, P. and Mrowka, E., Trapezoidal approximations of fuzzy numbers - revisited, Fuzzy Sets and Systems, 158, pp. 757-768, 2007, https://doi.org/10.1016/j.fss.2006.11.015 DOI: https://doi.org/10.1016/j.fss.2006.11.015
Guerra, M. L. and Stefanini, L., Approximate fuzzy arithmetic operations using monotonic interpolations, Fuzzy Sets and Systems, 150, pp. 5-33, 2005, https://doi.org/10.1016/j.fss.2004.06.007 DOI: https://doi.org/10.1016/j.fss.2004.06.007
Heilpern, S., The expected value of a fuzzy number, Fuzzy Sets and Systems, 47, pp. 81-86, 1992, https://doi.org/10.1016/0165-0114(92)90062-9 DOI: https://doi.org/10.1016/0165-0114(92)90062-9
Hung, W. and Hu, J., A note on the correlation of fuzzy numbers by expected interval, Internat. J. Uncertainty Fuzziness and Knowledge-based System, 9, pp. 517-523, 2001, https://doi.org/10.1016/s0218-4885(01)00092-2 DOI: https://doi.org/10.1142/S0218488501000922
Jimenez, M., Ranking fuzzy numbers through of its expected interval, Internat. J. Uncertainty Fuzziness and Knowledge-based System, 4, pp. 379-388, 1996, https://doi.org/10.1142/s0218488596000226 DOI: https://doi.org/10.1142/S0218488596000226
Nasibov, E. N. and Peker, S., On the nearest parametric approximation of a fuzzy number, Fuzzy Sets and Systems, 159, pp. 1365-1375, 2008, https://doi.org/10.1016/j.fss.2007.08.005 DOI: https://doi.org/10.1016/j.fss.2007.08.005
Yager, R. R., A procedure for ordering fuzzy subset of the unit interval, IInformation Sciences, 24, pp. 143-161, 1981, https://doi.org/10.1016/0020-0255(81)90017-7 DOI: https://doi.org/10.1016/0020-0255(81)90017-7
Yeh, C.-T., A note on trapezoidal approximation of fuzzy numbers, Fuzzy Sets and Systems, 158, pp. 747-754, 2007, https://doi.org/10.1016/j.fss.2006.11.017 DOI: https://doi.org/10.1016/j.fss.2006.11.017
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.