Trapezoidal operator preserving the expected interval and the support of fuzzy numbers

Authors

  • Adriana Brândaş Babeş-Bolyai University, Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat401-948

Keywords:

fuzzy number, trapezoidal fuzzy number, trapezoidal approximation
Abstract views: 238

Abstract

The problem to find the trapezoidal fuzzy number which preserves the expected interval and the support of a given fuzzy number is discussed. Properties of this new trapezoidal approximation operator are studied.

Downloads

Download data is not yet available.

References

Allahviranloo, T. and Adabitabar Firozja, M., Note on trapezoidal approximation of fuzzy numbers, Fuzzy Sets and Systems, 158, pp. 755-756, 2007, https://doi.org/10.1016/j.fss.2006.10.017 DOI: https://doi.org/10.1016/j.fss.2006.10.017

Ban, A., Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the expected value, Fuzzy Sets and Systems, 159, pp. 1327-1344, 2008, https://doi.org/10.1016/j.fss.2007.09.008 DOI: https://doi.org/10.1016/j.fss.2007.09.008

Ban, A., Triangular and parametric approximations of fuzzy numbers-inadvertences and corrections, Fuzzy Sets and Systems, 160, pp. 3048-3058, 2009, https://doi.org/10.1016/j.fss.2009.04.003 DOI: https://doi.org/10.1016/j.fss.2009.04.003

Ban, A., On the nearest parametric approximation of a fuzzy number - Revisited, Fuzzy Sets and Systems, 160, pp. 3027-3047, 2009, https://doi.org/10.1016/j.fss.2009.05.001 DOI: https://doi.org/10.1016/j.fss.2009.05.001

Bodjanova, S., Median value interval of a fuzzy number, Information Sciences, 172, pp. 73-89, 2005, https://doi.org/10.1016/j.ins.2004.07.018 DOI: https://doi.org/10.1016/j.ins.2004.07.018

Chanas, S., On the interval approximation of a fuzzy number, Fuzzy Sets and Systems, 122, pp. 353-356, 2001, https://doi.org/10.1016/s0165-0114(00)00080-4 DOI: https://doi.org/10.1016/S0165-0114(00)00080-4

Delgado, M., Vila, M. A. and Voxman, W., On a canonical representation of fuzzy numbers, Fuzzy Sets and Systems, 93, pp. 125-135, 1998, https://doi.org/10.1016/s0165-0114(96)00144-3 DOI: https://doi.org/10.1016/S0165-0114(96)00144-3

Diamond, P. and Kloeden, P., Metric Spaces of Fuzzy Sets. Theory and Applications, World Scientific, Singapore 1994. DOI: https://doi.org/10.1142/2326

Dubois, D. and Prade, H., Operations on fuzzy numbers, Internat. J. Systems Sci, 9, pp. 613-626, 1978, https://doi.org/10.1080/00207727808941724 DOI: https://doi.org/10.1080/00207727808941724

Dubois, D. and Prade, H., The mean value of a fuzzy number, Fuzzy Sets and Systems, 24, pp. 279-300, 1987, https://doi.org/10.1016/0165-0114(87)90028-5 DOI: https://doi.org/10.1016/0165-0114(87)90028-5

Grzegorzewski, P., Metrics and orders of fuzzy numbers, Fuzzy Sets and Systems, 97, pp. 83-94, 1998. https://doi.org/10.1016/s0165-0114(96)00322-3 DOI: https://doi.org/10.1016/S0165-0114(96)00322-3

Grzegorzewski, P. and Mrowka, E., Trapezoidal approximations of fuzzy numbers, Fuzzy Sets and Systems, 153, pp. 115-135, 2005, https://doi.org/10.1016/j.fss.2004.02.015 DOI: https://doi.org/10.1016/j.fss.2004.02.015

Grzegorzewski, P. and Mrowka, E., Trapezoidal approximations of fuzzy numbers - revisited, Fuzzy Sets and Systems, 158, pp. 757-768, 2007, https://doi.org/10.1016/j.fss.2006.11.015 DOI: https://doi.org/10.1016/j.fss.2006.11.015

Guerra, M. L. and Stefanini, L., Approximate fuzzy arithmetic operations using monotonic interpolations, Fuzzy Sets and Systems, 150, pp. 5-33, 2005, https://doi.org/10.1016/j.fss.2004.06.007 DOI: https://doi.org/10.1016/j.fss.2004.06.007

Heilpern, S., The expected value of a fuzzy number, Fuzzy Sets and Systems, 47, pp. 81-86, 1992, https://doi.org/10.1016/0165-0114(92)90062-9 DOI: https://doi.org/10.1016/0165-0114(92)90062-9

Hung, W. and Hu, J., A note on the correlation of fuzzy numbers by expected interval, Internat. J. Uncertainty Fuzziness and Knowledge-based System, 9, pp. 517-523, 2001, https://doi.org/10.1016/s0218-4885(01)00092-2 DOI: https://doi.org/10.1142/S0218488501000922

Jimenez, M., Ranking fuzzy numbers through of its expected interval, Internat. J. Uncertainty Fuzziness and Knowledge-based System, 4, pp. 379-388, 1996, https://doi.org/10.1142/s0218488596000226 DOI: https://doi.org/10.1142/S0218488596000226

Nasibov, E. N. and Peker, S., On the nearest parametric approximation of a fuzzy number, Fuzzy Sets and Systems, 159, pp. 1365-1375, 2008, https://doi.org/10.1016/j.fss.2007.08.005 DOI: https://doi.org/10.1016/j.fss.2007.08.005

Yager, R. R., A procedure for ordering fuzzy subset of the unit interval, IInformation Sciences, 24, pp. 143-161, 1981, https://doi.org/10.1016/0020-0255(81)90017-7 DOI: https://doi.org/10.1016/0020-0255(81)90017-7

Yeh, C.-T., A note on trapezoidal approximation of fuzzy numbers, Fuzzy Sets and Systems, 158, pp. 747-754, 2007, https://doi.org/10.1016/j.fss.2006.11.017 DOI: https://doi.org/10.1016/j.fss.2006.11.017

Downloads

Published

2011-02-01

Issue

Section

Articles

How to Cite

Brândaş, A. (2011). Trapezoidal operator preserving the expected interval and the support of fuzzy numbers. Rev. Anal. Numér. Théor. Approx., 40(1), 24-37. https://doi.org/10.33993/jnaat401-948