A Voronovskaja-type formula for the \(q\)-Meyer-König and Zeller operators
DOI:
https://doi.org/10.33993/jnaat401-953Keywords:
Meyer-König and Zeller operators, rate of convergence, \(q\)-calculusAbstract
A Voronovskaja-type formula for the \(q\)-Meyer-König and Zeller operators is presented.Downloads
References
Alkemade, J. A. H., The second moment for the Meyer-König and Zeller operators, J. Approx. Theory, 40, pp. 261-273, 1984. https://doi.org/10.1016/0021-9045(84)90067-4 DOI: https://doi.org/10.1016/0021-9045(84)90067-4
Andrews, G. E., Askey R. and Roy, R., Special Functions, Cambridge University Press, Cambridge, 1999. DOI: https://doi.org/10.1017/CBO9781107325937
Becker, M.and Nessel, R. J., A global approximation theorem for Meyer-K onig and Zeller operators, Math. Z, 160, pp. 195-206, 1978. https://doi.org/10.1007/bf01237033 DOI: https://doi.org/10.1007/BF01237033
Cheney, E. W. and Sharma, A. Bernstein power series, Canad. J. Math., 16, pp. 241-253, 1964. https://doi.org/10.4153/cjm-1964-023-1 DOI: https://doi.org/10.4153/CJM-1964-023-1
Doğru, O. and Duman, O., Statistical approximation of Meyer-König and Zeller operators based on q-integers, Publ. Math. Debrecen, 68, pp. 199-214, 2006. DOI: https://doi.org/10.5486/PMD.2006.3306
Doğru, O. and Gupta, V. Korovkin-type approximation properties of bivariate q-Meyer-König and Zeller operators, Calcolo, 43, pp. 51-63, 2006. https://doi.org/10.1007/s10092-006-0114-8 DOI: https://doi.org/10.1007/s10092-006-0114-8
Doğru, O. and Örkcu, M., King type modification of Meyer-König and Zeller operators based on the q-integers, Math. Comput. Modelling, 50, pp. 1245-1251, 2009. https://doi.org/10.1016/j.mcm.2007.12.005 DOI: https://doi.org/10.1016/j.mcm.2009.07.003
Govil, N. K. and Gupta, V., Convergence of q-Meyer-König-Zeller-Durrmeyer operators, Adv. Stud. Contemp. Math. (Kyungshang), 19, pp. 97-108, 2009.
Lupaş, L., A q-analogue of the Meyer-K onig and Zeller operator, An. Univ. Oradea Fasc. Mat., 2, pp. 62-66, 1992.
Mahmudov, N. I., Korovkin-type theorems and applications, Cent. Eur. J. Math., 7, pp. 348-356, 2009. https://doi.org/10.2478/s11533-009-0006-7 DOI: https://doi.org/10.2478/s11533-009-0006-7
Mamedov, R. G., Asymptotic approximation of differentiable functions by linear positive operators, Dokl. Akad. Nauk SSSR, 128, pp. 471-474, 1959.
Meyer-Konig, W. and Zeller, K., Bernsteinsche Potenzreihen, Studia Math., 19, pp. 89-94, 1960. https://doi.org/10.4064/sm-19-1-89-94 DOI: https://doi.org/10.4064/sm-19-1-89-94
Ostrovska, S., On the improvement of analytic properties under the limit q-Bernstein operator, J. Approx. Theory, 138, pp. 37-53, 2006. https://doi.org/10.1016/j.jat.2005.09.015 DOI: https://doi.org/10.1016/j.jat.2005.09.015
Ostrovska, S., The unicity theorems for the limit q-Bernstein operator, Applicable Anal., 68, pp. 161-167, 2009. https://doi.org/10.1080/00036810802713784 DOI: https://doi.org/10.1080/00036810802713784
Özarslan, M. A. and Duman, O., Approximation theorems by Meyer-König and Zeller type operators, Chaos, Solitons and Fractals, 41, pp. 451-456, 2009. https://doi.org/10.1016/j.chaos.2008.02.006 DOI: https://doi.org/10.1016/j.chaos.2008.02.006
Sharma, H., Properties of q-Meyer-König-Zeller Durrmeyer operators, JIPAM. J. Inequal. Pure Appl. Math., 10, no. 4, Article 105, 10 pp. (electronic), 2009.
Sikkema, P. C., On some linear positive operators, Indag. Math, 32, pp. 327-337, 1970. https://doi.org/10.1016/s1385-7258(70)80037-3 DOI: https://doi.org/10.1016/S1385-7258(70)80037-3
Sikkema, P. C., On the asymptotic approximation with operators of Meyer-König and Zeller, Indag. Math., 32, pp. 428-440, 1970. https://doi.org/10.1016/s1385-7258(70)80047-6 DOI: https://doi.org/10.1016/S1385-7258(70)80047-6
Trif, T., Meyer-König and Zeller operators based on the q-integers, Rev. Anal. Num er. Th eor. Approx., 29, pp. 221-229, 2000, http://ictp.acad.ro/jnaat/journal/article/view/2000-vol29-no2-art13
Wang, H., Korovkin-type theorem and application, J. Approx. Theory, 132, pp. 258-264, 2005. https://doi.org/10.1016/j.jat.2004.12.010 DOI: https://doi.org/10.1016/j.jat.2004.12.010
Wang, H., Properties of convergence for the q-Meyer-K onig and Zeller operators, J. Math. Anal. Appl., 335, pp. 1360-1373, 2007. https://doi.org/10.1016/j.jmaa.2007.01.103 DOI: https://doi.org/10.1016/j.jmaa.2007.01.103
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.