Exact inequalities involving power mean, arithmetic mean and identric mean
DOI:
https://doi.org/10.33993/jnaat402-1042Keywords:
power mean, identric mean, arithmetic meanAbstract
For \(p\in \mathbb{R}\), the power mean \(M_{p}(a,b)\) of order \(p\), identric mean \(I(a,b)\) and arithmetic mean \(A(a,b)\) of two positive real numbers \(a\) and \(b\) are defined by \begin{equation*} M_{p}(a,b)= \begin{cases} \displaystyle\left(\tfrac{a^{p}+b^{p}}{2}\right)^{1/p}, & p\neq 0,\\ \sqrt{ab}, & p=0, \end{cases} \quad I(a,b)= \begin{cases} \displaystyle\tfrac{1}{\rm {e}}\left(b^{b}/a^{a}\right)^{1/(b-a)}, & a\neq b,\\ \displaystyle a, & a=b, \end{cases} \end{equation*} and \(A(a,b)=(a+b)/2\), respectively. In the article, we answer the questions: What are the least values \(p\), \(q\) and \(r\), such that inequalities \(A^{1/2}(a,b)I^{1/2}(a,b)\leq M_{p}(a,b)\), \(A(a,b)^{1/3}I^{2/3}(a,b)\leq M_{q}(a,b)\) and \(A^{2/3}(a,b)I^{1/3}(a,b)\leq M_{r}(a,b)\) hold for all \(a,b>0\)?Downloads
References
H. Alzer, Ungleichungen für (e/a)a(e/b)b, Elem. Math., 40, pp. 120-123, 1985.
H. Alzer, Ungleichungen für Mittlewerte, Arch. Math., 47(5), pp. 422-426, 1986, https://doi.org/10.1007/bf01189983 DOI: https://doi.org/10.1007/BF01189983
H. Alzer and W. Janous, Solution of problem 8*, Crux. Math., 13, pp. 173-178, 1987, https://doi.org/10.1007/bf01436200 DOI: https://doi.org/10.1007/BF01436200
H. Alzer and S.-L. Qiu, Inequalities for means in two variables, Arch. Math., 80(2), pp. 201-215, 2003, https://doi.org/10.1007/s00013-003-0456-2 DOI: https://doi.org/10.1007/s00013-003-0456-2
F. Burk, The geometric, logarithmic, and arithmetic mean inequalities, Amer. Math. Monthly, 94(6), pp. 527-528, 1987, https://doi.org/10.1080/00029890.1987.12000678 DOI: https://doi.org/10.1080/00029890.1987.12000678
B. C. Carlson, The logarithmic mean, Amer. Math. Monthly, 79, pp. 615-618, 1972, https://doi.org/10.1080/00029890.1972.11993095 DOI: https://doi.org/10.1080/00029890.1972.11993095
Y.-M. Chu, Y.-F. Qiu and M.-K. Wang, Sharp power mean bounds for the combination of Seiffert and geometric means, Abstr. Appl. Anal., Article ID 108920, 12 pages, 2010, https://doi.org/10.1155/2010/108920 DOI: https://doi.org/10.1155/2010/108920
Y.-M. Chu and W.-F. Xia, Two sharp inequalities for power mean, geometric mean, and harmonic mean, J. Inequal. Appl., Article ID 741923, 6 pages, 2009, https://doi.org/10.1155/2009/741923 DOI: https://doi.org/10.1155/2009/741923
Y.-M. Chu and W.-F. Xia, Two optimal double inequalities between power mean and logarithmic mean, Comput. Math. Appl., 60(1), pp. 83-89, 2010, https://doi.org/10.1016/j.camwa.2010.04.032 DOI: https://doi.org/10.1016/j.camwa.2010.04.032
Y.-M. Chu and B.-O. Long, Sharp inequalities between means, Math. Inequal. Appl., 14(3), pp. 647-655, 2011, https://doi.org/10.7153/mia-14-55 DOI: https://doi.org/10.7153/mia-14-55
Y.-M. Chu, S.-S. Wang and C. Zong, Optimal lower power mean bound for the convex combination of harmonic and logarithmic means, Abstr. Appl. Anal., Article ID 520648, 9 pages, 2011, https://doi.org/10.1155/2011/520648 DOI: https://doi.org/10.1155/2011/520648
Y.-M. Chu and B.-Y. Long, A sharp double inequality between generalized Heronian and power means, Pac. J. Appl. Math., 3(4), pp. 39-48, 2011.
Y.-M. Chu, M.-K. Wang and Z.-K. Wang, A sharp double inequality between harmonic and identric means, Abstr. Appl. Anal., Article ID 657935, 7 pages, 2011, https://doi.org/10.1155/2011/657935 DOI: https://doi.org/10.1155/2011/657935
E. B. Leach and M. C. Sholander, Extended mean values II, J. Math. Anal. Appl., 92(1), pp. 207-223, 1983, https://doi.org/10.1016/0022-247x(83)90280-9 DOI: https://doi.org/10.1016/0022-247X(83)90280-9
Y.-M. Li, B.-Y. Long, Y.-M. Chu and W.-M. Gong, Optimal inequalities for power means, J. Appl. Math., Article ID 182905, 8 pages, 2012, https://doi.org/10.1155/2012/182905 DOI: https://doi.org/10.1155/2012/182905
T. P. Lin, The power mean and the logarithmic mean, Amer. Math. Monthly, 81, pp. 879-883, 1974, https://doi.org/10.1080/00029890.1974.11993684 DOI: https://doi.org/10.1080/00029890.1974.11993684
B.-O. Long and Y.-M. Chu, Optimal power mean bounds for the weighted geometric mean of classical means, J. Inequal. Appl., Article ID 905679, 2010, https://doi.org/10.1155/2010/905679
B.-O. Long, W.-F. Xia and Y.-M. Chu, An optimal inequality for power mean, geometric mean and harmonic mean, Int. J. Mod. Math., 5(2), pp. 149-155, 2010. DOI: https://doi.org/10.1155/2010/905679
A. O. Pittenger, Inequalities between arithmetic and logarithmic means, Univ. Beogard. Publ. Elecktrotehn. Fak. Ser. Mat. Fiz., 678-715, pp. 15-18, 1981.
A. O. Pittenger, The symmetric, logarithmic and power means, Univ. Beogard. Publ. Elecktrotehn. Fak. Ser. Mat. Fiz., 678-715, pp. 19-23, 1981.
Y.-F. Qiu, M.-K. Wang, Y.-M. Chu and G.-D. Wang, Two sharp inequalities for Lehmer mean, idnetric mean and logarithmic mean, J. Math. Inequal., 5(3), pp. 301-306, 2011. https://doi.org/10.7153/jmi-05-27 DOI: https://doi.org/10.7153/jmi-05-27
S.-L. Qiu, Y.-F. Qiu, M.-K. Wang and Y.-M. Chu, Hölder mean inequalities for the generalized Grötzsch ring and Hersch-Pfluger distortion functions, Math. Inequal. Appl., 15(1), pp. 237-245, 2012, https://doi.org/10.7153/mia-15-20 DOI: https://doi.org/10.7153/mia-15-20
Y.-F. Qiu, M.-K. Wang and Y.-M. Chu, The optimal generalized Heronian mean bounds for the identric mean, Int. J. Pure Appl. Math., 72(1), pp. 19-26, 2011.
J. Sándor, A note on some inequalities for means, Arch. Math., 56(5), pp. 471-473, 1991. https://doi.org/10.1007/bf01200091 DOI: https://doi.org/10.1007/BF01200091
M.-Y. Shi, Y.-M. Chu and Y.-P. Jiang, Optimal inequalities among various means of two arguments, Abstr. Appl. Anal., Article ID 694394, 10 pages, 2009, https://doi.org/10.1155/2009/694394 DOI: https://doi.org/10.1155/2009/694394
M.-Y. Shi, Y.-M. Chu and Y.-P. Jiang, Three best inequalities for means in two variables, Int. Math. Forum, 5(21-24), pp. 1059-1066, 2010.
M.-Y. Shi, Y.-M. Chu and Y.-P. Jiang, Optimal inequalities related to the power, harmonic and identric means, Acta Math. Sci, 31A(5), pp. 1377-1384, 2011 (Chinese).
K. B. Stolarsky, The power and gerneralized logarithmic means, Amer. Math. Monthly, 87(7), pp. 545-548, 1980, https://doi.org/10.1080/00029890.1980.11995086 DOI: https://doi.org/10.1080/00029890.1980.11995086
M.-K. Wang, Y.-M. Chu and Y.-F. Qiu, Some comparison inequalities for generalized Muirhead and identric means, J. Inequal. Appl., Article ID 295620, 10 pages, 2010, https://doi.org/10.1155/2010/295620 DOI: https://doi.org/10.1155/2010/295620
M.-K. Wang, Y.-M. Chu, Y.-F. Qiu and S.-L. Qiu, An optimal power mean inequality for the complete elliptic integrals, Appl. Math. Lett., 24(6), pp. 887-890, 2011, https://doi.org/10.1016/j.aml.2010.12.044 DOI: https://doi.org/10.1016/j.aml.2010.12.044
G.-D. Wang, X.-H. Zhang and Y.-M. Chu, A power mean inequality for the Grötzsch ring function, Math. Inequal. Appl., 14(4), pp. 833-837, 2011, https://doi.org/10.7153/mia-14-69 DOI: https://doi.org/10.7153/mia-14-69
M.-K. Wang, Z.-K. Wang and Y.-M. Chu, An optimal double inequality between geometric and identric means, Appl. Math. Lett., 25(3), pp. 471-475, 2012, https://doi.org/10.1016/j.aml.2011.09.038 DOI: https://doi.org/10.1016/j.aml.2011.09.038
M.-K. Wang, Y.-M. Chu, S.-L. Qiu and Y.-P. Jiang, Convexity of the complete elliptic integrals of the first kind with respect to Hölder means, J. Math. Anal. Appl., 388(2), pp. 1141-1146, 2012, https://doi.org/10.1016/j.jmaa.2011.10.063 DOI: https://doi.org/10.1016/j.jmaa.2011.10.063
W.-F. Xia, Y.-M. Chu and G.-D. Wang, The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means, Abstr. Appl. Anal., Article ID 604804, 2010, https://doi.org/10.1155/2010/604804 DOI: https://doi.org/10.1155/2010/604804
W.-F. Xia and Y.-M. Chu, Optimal inequalities related to the logarithmic, identric, arithmetic and harmonic means, Rev. Anal. Numér. Théor. Approx., 39(2), pp. 176-193, 2010.
C. Zong and Y.-M. Chu, An inequality among identric, geometric and Seiffert's means, Int. Math. Forum, 5(25-28), pp. 1297-1302, 2010.
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.