Exact inequalities involving power mean, arithmetic mean and identric mean

Authors

  • Yu-ming Chu Huzhou Teachers College, China
  • Ming-yu Shi Hunan University, China
  • Yue-ping Jiang Hunan University, China

DOI:

https://doi.org/10.33993/jnaat402-1042

Keywords:

power mean, identric mean, arithmetic mean
Abstract views: 275

Abstract

For \(p\in \mathbb{R}\), the power mean \(M_{p}(a,b)\) of order \(p\), identric mean \(I(a,b)\) and arithmetic mean \(A(a,b)\) of two positive real numbers \(a\) and \(b\) are defined by \begin{equation*} M_{p}(a,b)= \begin{cases} \displaystyle\left(\tfrac{a^{p}+b^{p}}{2}\right)^{1/p}, & p\neq 0,\\ \sqrt{ab}, & p=0, \end{cases} \quad I(a,b)= \begin{cases} \displaystyle\tfrac{1}{\rm {e}}\left(b^{b}/a^{a}\right)^{1/(b-a)}, & a\neq b,\\ \displaystyle a, & a=b, \end{cases} \end{equation*} and \(A(a,b)=(a+b)/2\), respectively.   In the article, we answer the questions: What are the least values \(p\), \(q\) and \(r\), such that inequalities \(A^{1/2}(a,b)I^{1/2}(a,b)\leq M_{p}(a,b)\), \(A(a,b)^{1/3}I^{2/3}(a,b)\leq M_{q}(a,b)\) and \(A^{2/3}(a,b)I^{1/3}(a,b)\leq M_{r}(a,b)\) hold for all \(a,b>0\)?

Downloads

Download data is not yet available.

References

H. Alzer, Ungleichungen für (e/a)a(e/b)b, Elem. Math., 40, pp. 120-123, 1985.

H. Alzer, Ungleichungen für Mittlewerte, Arch. Math., 47(5), pp. 422-426, 1986, https://doi.org/10.1007/bf01189983 DOI: https://doi.org/10.1007/BF01189983

H. Alzer and W. Janous, Solution of problem 8*, Crux. Math., 13, pp. 173-178, 1987, https://doi.org/10.1007/bf01436200 DOI: https://doi.org/10.1007/BF01436200

H. Alzer and S.-L. Qiu, Inequalities for means in two variables, Arch. Math., 80(2), pp. 201-215, 2003, https://doi.org/10.1007/s00013-003-0456-2 DOI: https://doi.org/10.1007/s00013-003-0456-2

F. Burk, The geometric, logarithmic, and arithmetic mean inequalities, Amer. Math. Monthly, 94(6), pp. 527-528, 1987, https://doi.org/10.1080/00029890.1987.12000678 DOI: https://doi.org/10.1080/00029890.1987.12000678

B. C. Carlson, The logarithmic mean, Amer. Math. Monthly, 79, pp. 615-618, 1972, https://doi.org/10.1080/00029890.1972.11993095 DOI: https://doi.org/10.1080/00029890.1972.11993095

Y.-M. Chu, Y.-F. Qiu and M.-K. Wang, Sharp power mean bounds for the combination of Seiffert and geometric means, Abstr. Appl. Anal., Article ID 108920, 12 pages, 2010, https://doi.org/10.1155/2010/108920 DOI: https://doi.org/10.1155/2010/108920

Y.-M. Chu and W.-F. Xia, Two sharp inequalities for power mean, geometric mean, and harmonic mean, J. Inequal. Appl., Article ID 741923, 6 pages, 2009, https://doi.org/10.1155/2009/741923 DOI: https://doi.org/10.1155/2009/741923

Y.-M. Chu and W.-F. Xia, Two optimal double inequalities between power mean and logarithmic mean, Comput. Math. Appl., 60(1), pp. 83-89, 2010, https://doi.org/10.1016/j.camwa.2010.04.032 DOI: https://doi.org/10.1016/j.camwa.2010.04.032

Y.-M. Chu and B.-O. Long, Sharp inequalities between means, Math. Inequal. Appl., 14(3), pp. 647-655, 2011, https://doi.org/10.7153/mia-14-55 DOI: https://doi.org/10.7153/mia-14-55

Y.-M. Chu, S.-S. Wang and C. Zong, Optimal lower power mean bound for the convex combination of harmonic and logarithmic means, Abstr. Appl. Anal., Article ID 520648, 9 pages, 2011, https://doi.org/10.1155/2011/520648 DOI: https://doi.org/10.1155/2011/520648

Y.-M. Chu and B.-Y. Long, A sharp double inequality between generalized Heronian and power means, Pac. J. Appl. Math., 3(4), pp. 39-48, 2011.

Y.-M. Chu, M.-K. Wang and Z.-K. Wang, A sharp double inequality between harmonic and identric means, Abstr. Appl. Anal., Article ID 657935, 7 pages, 2011, https://doi.org/10.1155/2011/657935 DOI: https://doi.org/10.1155/2011/657935

E. B. Leach and M. C. Sholander, Extended mean values II, J. Math. Anal. Appl., 92(1), pp. 207-223, 1983, https://doi.org/10.1016/0022-247x(83)90280-9 DOI: https://doi.org/10.1016/0022-247X(83)90280-9

Y.-M. Li, B.-Y. Long, Y.-M. Chu and W.-M. Gong, Optimal inequalities for power means, J. Appl. Math., Article ID 182905, 8 pages, 2012, https://doi.org/10.1155/2012/182905 DOI: https://doi.org/10.1155/2012/182905

T. P. Lin, The power mean and the logarithmic mean, Amer. Math. Monthly, 81, pp. 879-883, 1974, https://doi.org/10.1080/00029890.1974.11993684 DOI: https://doi.org/10.1080/00029890.1974.11993684

B.-O. Long and Y.-M. Chu, Optimal power mean bounds for the weighted geometric mean of classical means, J. Inequal. Appl., Article ID 905679, 2010, https://doi.org/10.1155/2010/905679

B.-O. Long, W.-F. Xia and Y.-M. Chu, An optimal inequality for power mean, geometric mean and harmonic mean, Int. J. Mod. Math., 5(2), pp. 149-155, 2010. DOI: https://doi.org/10.1155/2010/905679

A. O. Pittenger, Inequalities between arithmetic and logarithmic means, Univ. Beogard. Publ. Elecktrotehn. Fak. Ser. Mat. Fiz., 678-715, pp. 15-18, 1981.

A. O. Pittenger, The symmetric, logarithmic and power means, Univ. Beogard. Publ. Elecktrotehn. Fak. Ser. Mat. Fiz., 678-715, pp. 19-23, 1981.

Y.-F. Qiu, M.-K. Wang, Y.-M. Chu and G.-D. Wang, Two sharp inequalities for Lehmer mean, idnetric mean and logarithmic mean, J. Math. Inequal., 5(3), pp. 301-306, 2011. https://doi.org/10.7153/jmi-05-27 DOI: https://doi.org/10.7153/jmi-05-27

S.-L. Qiu, Y.-F. Qiu, M.-K. Wang and Y.-M. Chu, Hölder mean inequalities for the generalized Grötzsch ring and Hersch-Pfluger distortion functions, Math. Inequal. Appl., 15(1), pp. 237-245, 2012, https://doi.org/10.7153/mia-15-20 DOI: https://doi.org/10.7153/mia-15-20

Y.-F. Qiu, M.-K. Wang and Y.-M. Chu, The optimal generalized Heronian mean bounds for the identric mean, Int. J. Pure Appl. Math., 72(1), pp. 19-26, 2011.

J. Sándor, A note on some inequalities for means, Arch. Math., 56(5), pp. 471-473, 1991. https://doi.org/10.1007/bf01200091 DOI: https://doi.org/10.1007/BF01200091

M.-Y. Shi, Y.-M. Chu and Y.-P. Jiang, Optimal inequalities among various means of two arguments, Abstr. Appl. Anal., Article ID 694394, 10 pages, 2009, https://doi.org/10.1155/2009/694394 DOI: https://doi.org/10.1155/2009/694394

M.-Y. Shi, Y.-M. Chu and Y.-P. Jiang, Three best inequalities for means in two variables, Int. Math. Forum, 5(21-24), pp. 1059-1066, 2010.

M.-Y. Shi, Y.-M. Chu and Y.-P. Jiang, Optimal inequalities related to the power, harmonic and identric means, Acta Math. Sci, 31A(5), pp. 1377-1384, 2011 (Chinese).

K. B. Stolarsky, The power and gerneralized logarithmic means, Amer. Math. Monthly, 87(7), pp. 545-548, 1980, https://doi.org/10.1080/00029890.1980.11995086 DOI: https://doi.org/10.1080/00029890.1980.11995086

M.-K. Wang, Y.-M. Chu and Y.-F. Qiu, Some comparison inequalities for generalized Muirhead and identric means, J. Inequal. Appl., Article ID 295620, 10 pages, 2010, https://doi.org/10.1155/2010/295620 DOI: https://doi.org/10.1155/2010/295620

M.-K. Wang, Y.-M. Chu, Y.-F. Qiu and S.-L. Qiu, An optimal power mean inequality for the complete elliptic integrals, Appl. Math. Lett., 24(6), pp. 887-890, 2011, https://doi.org/10.1016/j.aml.2010.12.044 DOI: https://doi.org/10.1016/j.aml.2010.12.044

G.-D. Wang, X.-H. Zhang and Y.-M. Chu, A power mean inequality for the Grötzsch ring function, Math. Inequal. Appl., 14(4), pp. 833-837, 2011, https://doi.org/10.7153/mia-14-69 DOI: https://doi.org/10.7153/mia-14-69

M.-K. Wang, Z.-K. Wang and Y.-M. Chu, An optimal double inequality between geometric and identric means, Appl. Math. Lett., 25(3), pp. 471-475, 2012, https://doi.org/10.1016/j.aml.2011.09.038 DOI: https://doi.org/10.1016/j.aml.2011.09.038

M.-K. Wang, Y.-M. Chu, S.-L. Qiu and Y.-P. Jiang, Convexity of the complete elliptic integrals of the first kind with respect to Hölder means, J. Math. Anal. Appl., 388(2), pp. 1141-1146, 2012, https://doi.org/10.1016/j.jmaa.2011.10.063 DOI: https://doi.org/10.1016/j.jmaa.2011.10.063

W.-F. Xia, Y.-M. Chu and G.-D. Wang, The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means, Abstr. Appl. Anal., Article ID 604804, 2010, https://doi.org/10.1155/2010/604804 DOI: https://doi.org/10.1155/2010/604804

W.-F. Xia and Y.-M. Chu, Optimal inequalities related to the logarithmic, identric, arithmetic and harmonic means, Rev. Anal. Numér. Théor. Approx., 39(2), pp. 176-193, 2010.

C. Zong and Y.-M. Chu, An inequality among identric, geometric and Seiffert's means, Int. Math. Forum, 5(25-28), pp. 1297-1302, 2010.

Downloads

Published

2011-08-01

How to Cite

Chu, Y.- ming, Shi, M.- yu, & Jiang, Y.- ping. (2011). Exact inequalities involving power mean, arithmetic mean and identric mean. Rev. Anal. Numér. Théor. Approx., 40(2), 120–127. https://doi.org/10.33993/jnaat402-1042

Issue

Section

Articles