Quenching for semidiscretizations of a semilinear heat equation with potential and general nonlinearity
DOI:
https://doi.org/10.33993/jnaat402-1046Keywords:
semidiscretizations, semilinear parabolic equation, quenching, numerical quenching time, convergence, full discretizationsAbstract
This paper concerns the study of the numerical approximation for the following boundary value problem \begin{equation*} \begin{cases} u_t(x,t)-u_{xx}(x,t)= -a(x)f(u(x,t)), & 0<x<1,\; t>0, \\ u_x(0,t)= 0, u(1,t)=0, & t>0, \\ u(x,0)= u_{0}(x)>0, & 0\leq x \leq 1, \\ \end{cases} \end{equation*} where \(f:(0,\infty)\rightarrow (0,\infty)\) is a \(C^{1}\) convex, nondecreasing function, \(\lim_{s\rightarrow 0^{+}}f(s)=\infty,\) \(\int_0^{\alpha}\tfrac{{\rm d}s}{f(s)}<\infty \) for any positive real \(\alpha.\) The initial datum \(u_{0}\in C^{2}([0,1]\) \(u'_{0}(0)=0\) and \(u'_{0}(1)=0\). The potential \(a\in C^{1}((0,1))\), \(a(x)>0,\) \(x \in (0,1),\) \(a'(0)=0,\) \(a'(1)=0.\) We find some conditions under which the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also prove that the semidiscrete quenching time converges to the real one when the mesh size goes to zero. A similar study has been also investigated taking a discrete form of the above problem. Finally, we give some numerical experiments to illustrate our analysis.Downloads
References
L. M. Abia, J. C. López-Marcos and J. Martinez, On the blow-up time convergence of semidiscretizations of reaction-diffusion equations, Appl. Numer. Math., 26, pp. 399-414, 1998, https://doi.org/10.1016/s0168-9274(97)00105-0 DOI: https://doi.org/10.1016/S0168-9274(97)00105-0
A. Acker and B. Kawohl, Remarks on quenching, Nonl. Anal. TMA, 13, pp. 53-61, 1989, https://doi.org/10.1016/0362-546x(89)90034-5 DOI: https://doi.org/10.1016/0362-546X(89)90034-5
T. K. Boni, Extinction for discretizations of some semilinear parabolic equations, C.R.A.S. Serie I, 333, pp. 795-800, 2001, https://doi.org/10.1016/s0764-4442(01)02078-x DOI: https://doi.org/10.1016/S0764-4442(01)02078-X
T. K. Boni, On quenching of solutions for some semilinear parabolic equations of second order, Bull. Belg. Math. Soc., 7, pp. 73-95, 2000. DOI: https://doi.org/10.36045/bbms/1103055721
M. Fila, B. Kawohl and H. A. Levine, Quenching for quasilinear equations, Comm. Part. Diff. Equat., 17, pp. 593-614, 1992.
J. S. Guo and B. Hu, The profile near quenching time for the solution of a singular semilinear heat equation, Proc. Edin. Math. Soc., 40, pp. 437-456, 1997, https://doi.org/10.1017/s0013091500023932 DOI: https://doi.org/10.1017/S0013091500023932
J. Guo, On a quenching problem with Robin boundary condition, Nonl. Anal. TMA., 17, pp. 803-809, 1991, https://doi.org/10.1016/0362-546x(91)90154-s DOI: https://doi.org/10.1016/0362-546X(91)90154-S
V. A. Galaktionov and J. L. Vàzquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math., 50, pp. 1-67, 1997, https://doi.org/10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.0.CO;2-H DOI: https://doi.org/10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.0.CO;2-H
V. A. Galaktionov and J. L. Vàzquez, The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Systems A, 8, pp. 399-433, 2002, https://doi.org/10.3934/dcds.2002.8.399 DOI: https://doi.org/10.3934/dcds.2002.8.399
M. A. Herrero and J. J. L. Velazquez, Generic behaviour of one dimensional blow up patterns, Ann. Scuola Norm. Sup. di Pisa, XIX, pp. 381-950, 1992.
C. M. Kirk and C. A. Roberts, A review of quenching results in the context of nonlinear volterra equations, Dyn. contin. Discrete Impuls. Syst. Ser. A, Math. Anal., 10, pp. 343-356, 2003.
H. A. Levine, Quenching, nonquenching and beyond quenching for solutions of some parabolic equations, Annali Math. Pura Appl., 155, pp. 243-260, 1990, https://doi.org/10.1007/bf01765943 DOI: https://doi.org/10.1007/BF01765943
K. W. Liang, P. Lin and R. C. E. Tan, Numerical solution of quenching problems using mesh-dependent variable temporal steps, Appl. Numer. Math., 57, pp. 791-800, 2007, https://doi.org/10.1016/j.apnum.2006.07.018 DOI: https://doi.org/10.1016/j.apnum.2006.07.018
K. W. Liang, P. Lin, M. T. Ong and R. C. E. Tan, A splitting moving mesh method for reaction-diffusion equations of quenching type, J. Comput. Phys., (to appear) 215 2 757-777, https://doi.org/10.1016/j.jcp.2005.11.019 DOI: https://doi.org/10.1016/j.jcp.2005.11.019
T. Nakagawa, Blowing up on the finite difference solution to ut=uxx+u², Appl. Math. Optim., 2, pp. 337-350, 1976, https://doi.org/10.1007/bf01448176 DOI: https://doi.org/10.1007/BF01448176
D. Phillips, Existence of solutions of quenching problems, Appl. Anal., 24, pp. 253-264, 1987, https://doi.org/10.1080/00036818708839668 DOI: https://doi.org/10.1080/00036818708839668
M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, NJ, 1967, https://doi.org/10.1007/978-1-4612-5282-5 DOI: https://doi.org/10.1007/978-1-4612-5282-5
Q. Sheng and A. Q. M. Khaliq, Adaptive algorithms for convection-diffusion-reaction equations of quenching type, Dyn. Contin. Discrete Impuls. Syst. Ser. A, Math. Anal., 8, pp. 129-148, 2001.
Q. Sheng and A. Q. M. Khaliq, A compound adaptive approach to degenerate nonlinear quenching problems, Numer. Methods PDE, 15, pp. 29-47, 1999, https://doi.org/10.1002/(SICI)1098-2426(199901)15:1<29::AID-NUM2>3.0.CO;2-L DOI: https://doi.org/10.1002/(SICI)1098-2426(199901)15:1<29::AID-NUM2>3.0.CO;2-L
W. Walter, Differential-und Integral-Ungleichungen, Springer, Berlin, 1964, https://doi.org/10.1007/978-3-662-42030-0 DOI: https://doi.org/10.1007/978-3-662-42030-0
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.