Quenching for semidiscretizations of a semilinear heat equation with potential and general nonlinearity

Authors

  • Halima Nachid Universite d'Abobo-Adjam, Côte d'Ivoire

DOI:

https://doi.org/10.33993/jnaat402-1046

Keywords:

semidiscretizations, semilinear parabolic equation, quenching, numerical quenching time, convergence, full discretizations
Abstract views: 214

Abstract

This paper concerns the study of the numerical approximation for the following boundary value problem  \begin{equation*} \begin{cases} u_t(x,t)-u_{xx}(x,t)= -a(x)f(u(x,t)), & 0<x<1,\; t>0, \\ u_x(0,t)= 0, u(1,t)=0, & t>0, \\ u(x,0)= u_{0}(x)>0, & 0\leq x \leq 1, \\ \end{cases} \end{equation*} where \(f:(0,\infty)\rightarrow (0,\infty)\) is a \(C^{1}\) convex, nondecreasing function, \(\lim_{s\rightarrow 0^{+}}f(s)=\infty,\) \(\int_0^{\alpha}\tfrac{{\rm d}s}{f(s)}<\infty \) for any positive real \(\alpha.\) The initial datum \(u_{0}\in C^{2}([0,1]\) \(u'_{0}(0)=0\) and \(u'_{0}(1)=0\). The potential \(a\in C^{1}((0,1))\), \(a(x)>0,\) \(x \in (0,1),\) \(a'(0)=0,\) \(a'(1)=0.\) We find some conditions under which the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also prove that the semidiscrete quenching time converges to the real one when the mesh size goes to zero. A similar study has been also investigated taking a discrete form of the above problem. Finally, we give some numerical experiments to illustrate our analysis.

Downloads

Download data is not yet available.

References

L. M. Abia, J. C. López-Marcos and J. Martinez, On the blow-up time convergence of semidiscretizations of reaction-diffusion equations, Appl. Numer. Math., 26, pp. 399-414, 1998, https://doi.org/10.1016/s0168-9274(97)00105-0 DOI: https://doi.org/10.1016/S0168-9274(97)00105-0

A. Acker and B. Kawohl, Remarks on quenching, Nonl. Anal. TMA, 13, pp. 53-61, 1989, https://doi.org/10.1016/0362-546x(89)90034-5 DOI: https://doi.org/10.1016/0362-546X(89)90034-5

T. K. Boni, Extinction for discretizations of some semilinear parabolic equations, C.R.A.S. Serie I, 333, pp. 795-800, 2001, https://doi.org/10.1016/s0764-4442(01)02078-x DOI: https://doi.org/10.1016/S0764-4442(01)02078-X

T. K. Boni, On quenching of solutions for some semilinear parabolic equations of second order, Bull. Belg. Math. Soc., 7, pp. 73-95, 2000. DOI: https://doi.org/10.36045/bbms/1103055721

M. Fila, B. Kawohl and H. A. Levine, Quenching for quasilinear equations, Comm. Part. Diff. Equat., 17, pp. 593-614, 1992.

J. S. Guo and B. Hu, The profile near quenching time for the solution of a singular semilinear heat equation, Proc. Edin. Math. Soc., 40, pp. 437-456, 1997, https://doi.org/10.1017/s0013091500023932 DOI: https://doi.org/10.1017/S0013091500023932

J. Guo, On a quenching problem with Robin boundary condition, Nonl. Anal. TMA., 17, pp. 803-809, 1991, https://doi.org/10.1016/0362-546x(91)90154-s DOI: https://doi.org/10.1016/0362-546X(91)90154-S

V. A. Galaktionov and J. L. Vàzquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math., 50, pp. 1-67, 1997, https://doi.org/10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.0.CO;2-H DOI: https://doi.org/10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.0.CO;2-H

V. A. Galaktionov and J. L. Vàzquez, The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Systems A, 8, pp. 399-433, 2002, https://doi.org/10.3934/dcds.2002.8.399 DOI: https://doi.org/10.3934/dcds.2002.8.399

M. A. Herrero and J. J. L. Velazquez, Generic behaviour of one dimensional blow up patterns, Ann. Scuola Norm. Sup. di Pisa, XIX, pp. 381-950, 1992.

C. M. Kirk and C. A. Roberts, A review of quenching results in the context of nonlinear volterra equations, Dyn. contin. Discrete Impuls. Syst. Ser. A, Math. Anal., 10, pp. 343-356, 2003.

H. A. Levine, Quenching, nonquenching and beyond quenching for solutions of some parabolic equations, Annali Math. Pura Appl., 155, pp. 243-260, 1990, https://doi.org/10.1007/bf01765943 DOI: https://doi.org/10.1007/BF01765943

K. W. Liang, P. Lin and R. C. E. Tan, Numerical solution of quenching problems using mesh-dependent variable temporal steps, Appl. Numer. Math., 57, pp. 791-800, 2007, https://doi.org/10.1016/j.apnum.2006.07.018 DOI: https://doi.org/10.1016/j.apnum.2006.07.018

K. W. Liang, P. Lin, M. T. Ong and R. C. E. Tan, A splitting moving mesh method for reaction-diffusion equations of quenching type, J. Comput. Phys., (to appear) 215 2 757-777, https://doi.org/10.1016/j.jcp.2005.11.019 DOI: https://doi.org/10.1016/j.jcp.2005.11.019

T. Nakagawa, Blowing up on the finite difference solution to ut=uxx+u², Appl. Math. Optim., 2, pp. 337-350, 1976, https://doi.org/10.1007/bf01448176 DOI: https://doi.org/10.1007/BF01448176

D. Phillips, Existence of solutions of quenching problems, Appl. Anal., 24, pp. 253-264, 1987, https://doi.org/10.1080/00036818708839668 DOI: https://doi.org/10.1080/00036818708839668

M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, NJ, 1967, https://doi.org/10.1007/978-1-4612-5282-5 DOI: https://doi.org/10.1007/978-1-4612-5282-5

Q. Sheng and A. Q. M. Khaliq, Adaptive algorithms for convection-diffusion-reaction equations of quenching type, Dyn. Contin. Discrete Impuls. Syst. Ser. A, Math. Anal., 8, pp. 129-148, 2001.

Q. Sheng and A. Q. M. Khaliq, A compound adaptive approach to degenerate nonlinear quenching problems, Numer. Methods PDE, 15, pp. 29-47, 1999, https://doi.org/10.1002/(SICI)1098-2426(199901)15:1<29::AID-NUM2>3.0.CO;2-L DOI: https://doi.org/10.1002/(SICI)1098-2426(199901)15:1<29::AID-NUM2>3.0.CO;2-L

W. Walter, Differential-und Integral-Ungleichungen, Springer, Berlin, 1964, https://doi.org/10.1007/978-3-662-42030-0 DOI: https://doi.org/10.1007/978-3-662-42030-0

Downloads

Published

2011-08-01

How to Cite

Nachid, H. (2011). Quenching for semidiscretizations of a semilinear heat equation with potential and general nonlinearity. Rev. Anal. Numér. Théor. Approx., 40(2), 164–181. https://doi.org/10.33993/jnaat402-1046

Issue

Section

Articles