Necessary and sufficient conditions for oscillation of the solutions of even order differential equations
DOI:
https://doi.org/10.33993/jnaat411-965Keywords:
oscillation, nonoscillatory solution, even order differential equationAbstract
In this paper, we establish several necessary and sufficient conditions for oscillation of the solutions of the following even order differential equation\[x^{(n)}(t) + q(t)x^\gamma (t) = 0, \quad \mbox{$n$ is even},\]where \( q(t) \in C([t_0 ,\infty ),{\mathbb R}^ + )\) and \(\gamma\) is the quotient of odd positive integers.Downloads
References
R.P. Agarwl, M. Bohner and W.-T. Li, Nonoscillation and Oscillation: Theory for Functional Differential Equations, Marcel Dekker, New York, 2004. https://doi.org/10.1201/9780203025741 DOI: https://doi.org/10.1201/9780203025741
R.P. Agarwal, S.R. Grace and D. O'regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 2000. https://doi.org/10.1007/978-94-015-9401-1_2; ?? https://doi.org/10.1007/978-94-015-9401-1_1
R.P. Agarwl, S.R. Grace and D. O'regan, Oscillation Theory for Second Order Dynamic Equations, Taylor & Francis, London, 2003. DOI: https://doi.org/10.4324/9780203222898
F.V. Atkinson, On second-order non-linear oscillations, Pacific J. Math., 5, pp. 643-647, 1955. https://doi.org/10.2140/pjm.1955.5.643 DOI: https://doi.org/10.2140/pjm.1955.5.643
Š. Belohorec, Oscillatory solutions of certain nonlinear differential equations of second order, Mat.-Fyz. Časopis Sloven. Akad. Vied, 11, pp. 250-255, 1961.
Š. Belohorec, Monotone and oscillatory solutions of a class of nonlinear differential equations, Mat. Časopis Sloven. Akad. Vied, 19, pp. 169-187, 1969.
L.H. Erbe, Q.-K. Kong and B.-G. Zhang, Oscillation Theory for Functional-Differential Equations, Marcel Dekker, New York, 1995.
N.T. Markova and P.S. Simeonov, Oscillation theorems for n-th order nonlinear differential equations with forcing terms and deviating arguments depending on the unknown function, Commun. Appl. Anal., 9(3-4), pp. 417-427, 2005.
N.T. Markova and P.S. Simeonov, Asymptotic and oscillatory behavior of n-th order forced differential equations with deviating argument depending on the unknown function, Panamer. Math. J., 16(1), pp. 1-15, 2006.
CH.G. Philos, Oscillation criteria for second order superlinear differential equations, Canad. J. Math., 41(2), pp. 321-340, 1989. https://doi.org/10.4153/cjm-1989-016-3 DOI: https://doi.org/10.4153/CJM-1989-016-3
P. Waltman, Oscillation of solutions of a nonlinear equation, SIAM Rev., 5, pp. 128-130, 1963. https://doi.org/10.1137/1005032 DOI: https://doi.org/10.1137/1005032
J.S.W. Wong, On the generalized Emden-Fowler equation, SIAM Rev., 17, pp. 339-360, 1975. https://doi.org/10.1137/1017036 DOI: https://doi.org/10.1137/1017036
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.