Minmax fractional programming problem involving generalized convex functions
DOI:
https://doi.org/10.33993/jnaat411-968Keywords:
minmax fractional programming, (\(F, \alpha, \rho, d\))-type I functions, second order dualityAbstract
In the present study we focus our attention on a minmax fractional programming problem and its second order dual problem. Duality results are obtained for the considered dual problem under the assumptions of second order \(\left( {F,\alpha ,\rho ,d}\right) \) -type I functions.Downloads
References
I. Ahmad and Z. Husain, Duality in nondifferentiable minimax fractional programming with generalized convexity, Appl. Math. Comp., 176, pp. 545-551, 2006. https://doi.org/10.1016/j.amc.2005.10.002 DOI: https://doi.org/10.1016/j.amc.2005.10.002
I. Ahmad, Z. Husain and S. Sharma, Second-order duality in nondifferentiable minmax programming involving type-I functions, J. Comp. Appl. Math., 215, pp. 91-102, 2008. https://doi.org/10.1016/j.cam.2007.03.022 DOI: https://doi.org/10.1016/j.cam.2007.03.022
C.R. Bector, S. Chandra and I. Husain, Second order duality for a minimax programming problem, Opsearch, 28, pp. 249-263, 1991.
S. Chandra and V. Kumar, Duality in fractional minimax programming, J. Austral. Math. Soc. Ser. A, 58, pp. 376-386, 1995. https://doi.org/10.1017/s1446788700038362 DOI: https://doi.org/10.1017/S1446788700038362
J.P. Crouzeix, J.A. Ferland and S. Schaible, Duality in generalized fractional programming, Math. Programming, 27, pp. 342-354, 1983. https://doi.org/10.1007/bf02591908 DOI: https://doi.org/10.1007/BF02591908
M. Hachimi and B. Aghezzaf, Second order duality in multiobjective programming involving generalized type-I functions, Numer. Funct. Anal. Optim., 25, pp. 725-736, 2004. https://doi.org/10.1081/nfa-200045804 DOI: https://doi.org/10.1081/NFA-200045804
M.A. Hanson, Second order invexity and duality in mathematical programming, Opsearch 30, pp. 313-320, 1993.
Z. Husain, I. Ahmad and S. Sharma, Second order duality for minmax fractional programming, Optim. Lett., 3, pp. 277-286, 2009. https://doi.org/10.1007/s11590-008-0107-4 DOI: https://doi.org/10.1007/s11590-008-0107-4
Z.A. Liang, H.X. Huang and P. Pardalos, P.M., Optimality conditions and duality for a class of nonlinear fractional programming problems, J. Optim. Theory Appl., 110, pp. 611-619, 2001. https://doi.org/10.1023/a:1017540412396 DOI: https://doi.org/10.1023/A:1017540412396
Z. Liang and Z. Shi, Optimality conditions and duality for a minimax fractional programming with generalized convexity, J. Math. Anal. Appl., 277, pp. 474-488, 2003. https://doi.org/10.1016/s0022-247x(02)00553-x DOI: https://doi.org/10.1016/S0022-247X(02)00553-X
J.C. Liu and C.S. Wu, On minimax fractional optimality conditions with (F,ρ)-convexity, J. Math. Anal. Appl, 219, pp. 36-51 1998. https://doi.org/10.1006/jmaa.1997.5785 DOI: https://doi.org/10.1006/jmaa.1997.5785
X.J. Long and J. Quan, Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity, Numer. Algebra Control Optim. 1, pp. 361-370, 2011. https://doi.org/10.3934/naco.2011.1.361 DOI: https://doi.org/10.3934/naco.2011.1.361
O.L. Mangasarian, Second and higher order duality in nonlinear programming, J. Math. Anal. Appl. 51, pp. 607-620, 1975. https://doi.org/10.1016/0022-247x(75)90111-0 DOI: https://doi.org/10.1016/0022-247X(75)90111-0
Q. Hu, G. Yang and J. Jian, On second order duality for minimax fractional programming, Nonlinear Anal. Real World Appl., 12, pp. 3509-3514, 2011. https://doi.org/10.1016/j.nonrwa.2011.06.011 DOI: https://doi.org/10.1016/j.nonrwa.2011.06.011
Q. Hu, Y. Chen and J. Jian, Second-order duality for nondifferentiable minimax fractional programming, Int. J. Comput. Math., 89, pp. 11-16, 2012. https://doi.org/10.1080/00207160.2011.631529 DOI: https://doi.org/10.1080/00207160.2011.631529
S.R. Yadav and R.N. Mukherjee, Duality for fractional minimax programming problems, J. Austral. Math. Soc. Ser. B, 31, pp. 482-492, 1990. https://doi.org/10.1017/s0334270000006809 DOI: https://doi.org/10.1017/S0334270000006809
X.M. Yang and S.H. Hou, On minimax fractional optimality and duality with generalized convexity, J. Global Optim., 31, pp. 235-252, 2005. https://doi.org/10.1007/s10898-004-5698-4 DOI: https://doi.org/10.1007/s10898-004-5698-4
J. Zhang and B. Mond, Second order duality for multiobjective nonlinear programming involving generalized convexity, in: B.M. Glover, B.D. Craven, D. Ralph (eds.), Proceeding of Optimization Miniconference III, University of Ballarat, pp. 79-95, 1997.
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.