A class of numerical methods for autonomous initial value problems

Authors

  • Flavius Olimpiu Pătrulescu Tiberiu Popoviciu Institute of Numerical Analysis, Romania

DOI:

https://doi.org/10.33993/jnaat411-970

Keywords:

initial value problem, stability region, convergence order, local truncation error
Abstract views: 316

Abstract

In this paper we introduce a class of explicit numerical methods for approximating the solutions of scalar initial value problems for first order differential equations, using a nonlinear interpolation formula. We show that the methods generated in this way can be identified as explicit Runge-Kutta methods and we analyze some particular cases. Finally, numerical examples are provided.

Downloads

Download data is not yet available.

References

J.C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, 2008. https://doi.org/10.1002/9780470753767 DOI: https://doi.org/10.1002/9780470753767

M. Crouzeix and A.L. Mignot, Analyse numérique des equations différentielles, Masson, Paris, 1989.

J.D. Lambert, Numerical Methods for Ordinary Differential Systems-The Initial Value Problem, John Wiley & Sons, 1990.

F. Pătrulescu, A numerical method for the solution of an autonomous initial value problem, Carpathian J. Math., 28, no. 2, pp. 289-296, 2012. DOI: https://doi.org/10.37193/CJM.2012.02.05

I. Păvăloiu, On an approxiation formula, Rev. Anal. Numér. Théor. Approx., 26, no. 1--2, pp. 179-183, 1997, http://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art23

A. Ralston, Runge-Kutta methods with minimum error bounds, Math. Comp., 16, no. 80, pp. 431-437, 1962. https://doi.org/10.1090/s0025-5718-1962-0150954-0 DOI: https://doi.org/10.1090/S0025-5718-1962-0150954-0

J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.

Downloads

Published

2012-01-01

Issue

Section

Articles

How to Cite

Pătrulescu, F. O. (2012). A class of numerical methods for autonomous initial value problems. Rev. Anal. Numér. Théor. Approx., 41(1), 82-92. https://doi.org/10.33993/jnaat411-970