On Newton's method using recurrent functions under hypotheses up to the second Fréchet derivative

Authors

  • Ioannis K. Argyros Cameron University, USA
  • Saïd Hilout Poitiers University, France

DOI:

https://doi.org/10.33993/jnaat412-972

Keywords:

Newton's method, recurrent functions, Banach space, semilocal convergence, Fréchet-derivative, majorizing sequence, Lipschitz/center-Lipschitz conditions, radius of convergence
Abstract views: 229

Abstract

We provide semilocal result for the convergence of Newton method to a locally unique solution of an equation in a Banach space setting using hypotheses up to the second Fréchet-derivatives and our new idea of recurrent functions. The advantages of such conditions over earlier ones in some cases are: finer bounds on the distances involved, and a better information on the location of the solution.

Downloads

Download data is not yet available.

References

I.K. Argyros, A Newton-Kantorovich theorem for equations involving m-Fréchet-differentiable operators and applications in radiative transfer, J. Comp. Appl. Math., 131 (2001) nos. 1-2, pp. 149-159, https://doi.org/10.1016/s0377-0427(00)00317-4 DOI: https://doi.org/10.1016/S0377-0427(00)00317-4

I.K. Argyros, Concerning the convergence and application of Newton's method under hypotheses on the first and second Fréchet derivative, Comm. Appl. Nonlinear Anal., 11 (2004), pp. 103-119.

I.K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl., 298 (2004), pp. 374-397, https://doi.org/10.1016/j.jmaa.2004.04.008 DOI: https://doi.org/10.1016/j.jmaa.2004.04.008

I.K. Argyros, Convergence and applications of Newton-type iterations, Springer-Verlag Publ., New York, 2008.

I.K. Argyros and S. Hilout, Aspects of the computational theory for certain iterative methods, Polimetrica Publisher, 2009.

I.K. Argyros and S. Hilout, Enclosing roots of polynomial equations and their applications to iterative processes, Surveys Math. Appl., 4 (2009), pp. 119-132.

I.K. Argyros and S. Hilout, On the semi-local convergence of inexact Newton methods in Banach spaces, J. Comput. Appl. Math., 228 (2009) no. 1, pp. 434-443, https://doi.org/10.1016/j.cam.2008.10.005 DOI: https://doi.org/10.1016/j.cam.2008.10.005

J.M. Gutiérrez, A new semilocal convergence theorem for Newton's method, J. Comp. Appl. Math., 79 (1997), pp. 131-145, https://doi.org/10.1016/s0377-0427(97)81611-1 DOI: https://doi.org/10.1016/S0377-0427(97)81611-1

Z. Huang, A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math., 47 (1993), pp. 211-217, https://doi.org/10.1016/0377-0427(93)90004-u DOI: https://doi.org/10.1016/0377-0427(93)90004-U

L.V. Kantorovich and G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.

F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Mathematica, 5 (1985), pp. 71-84.

Downloads

Published

2012-08-01

How to Cite

Argyros, I. K., & Hilout, S. (2012). On Newton’s method using recurrent functions under hypotheses up to the second Fréchet derivative. Rev. Anal. Numér. Théor. Approx., 41(2), 99–113. https://doi.org/10.33993/jnaat412-972

Issue

Section

Articles