On Newton's method using recurrent functions under hypotheses up to the second Fréchet derivative
DOI:
https://doi.org/10.33993/jnaat412-972Keywords:
Newton's method, recurrent functions, Banach space, semilocal convergence, Fréchet-derivative, majorizing sequence, Lipschitz/center-Lipschitz conditions, radius of convergenceAbstract
We provide semilocal result for the convergence of Newton method to a locally unique solution of an equation in a Banach space setting using hypotheses up to the second Fréchet-derivatives and our new idea of recurrent functions. The advantages of such conditions over earlier ones in some cases are: finer bounds on the distances involved, and a better information on the location of the solution.Downloads
References
I.K. Argyros, A Newton-Kantorovich theorem for equations involving m-Fréchet-differentiable operators and applications in radiative transfer, J. Comp. Appl. Math., 131 (2001) nos. 1-2, pp. 149-159, https://doi.org/10.1016/s0377-0427(00)00317-4 DOI: https://doi.org/10.1016/S0377-0427(00)00317-4
I.K. Argyros, Concerning the convergence and application of Newton's method under hypotheses on the first and second Fréchet derivative, Comm. Appl. Nonlinear Anal., 11 (2004), pp. 103-119.
I.K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl., 298 (2004), pp. 374-397, https://doi.org/10.1016/j.jmaa.2004.04.008 DOI: https://doi.org/10.1016/j.jmaa.2004.04.008
I.K. Argyros, Convergence and applications of Newton-type iterations, Springer-Verlag Publ., New York, 2008.
I.K. Argyros and S. Hilout, Aspects of the computational theory for certain iterative methods, Polimetrica Publisher, 2009.
I.K. Argyros and S. Hilout, Enclosing roots of polynomial equations and their applications to iterative processes, Surveys Math. Appl., 4 (2009), pp. 119-132.
I.K. Argyros and S. Hilout, On the semi-local convergence of inexact Newton methods in Banach spaces, J. Comput. Appl. Math., 228 (2009) no. 1, pp. 434-443, https://doi.org/10.1016/j.cam.2008.10.005 DOI: https://doi.org/10.1016/j.cam.2008.10.005
J.M. Gutiérrez, A new semilocal convergence theorem for Newton's method, J. Comp. Appl. Math., 79 (1997), pp. 131-145, https://doi.org/10.1016/s0377-0427(97)81611-1 DOI: https://doi.org/10.1016/S0377-0427(97)81611-1
Z. Huang, A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math., 47 (1993), pp. 211-217, https://doi.org/10.1016/0377-0427(93)90004-u DOI: https://doi.org/10.1016/0377-0427(93)90004-U
L.V. Kantorovich and G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Mathematica, 5 (1985), pp. 71-84.
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.