About bounds for the elliptic integral of the first kind

Authors

  • Pál A. Kupán Sapientia University, Romania
  • Róbert Szász Sapientia University, Romania

DOI:

https://doi.org/10.33993/jnaat412-976

Keywords:

hypergeometric function, elliptic integral, inequality, bounds
Abstract views: 260

Abstract

We deduce an inequality using elementary methods which makes it possible to prove a conjecture regarding the upper bound of the elliptic integral of the first kind, furthermore we also improve the lower bound.

Downloads

References

H. Alzer and S.-L. Qiu, Monotonicity theorems and inequalities for the complete elliptic integrals, Journal of Comp. Appl. Math., 172 (2004), pp. 289-312, https://doi.org/10.1016/j.cam.2004.02.009 DOI: https://doi.org/10.1016/j.cam.2004.02.009

G.D. Anderson, M.K. Vamanamurthy and M. Vourinen, Inequalities for quasiconformal mappings in spaces, Pacific J. Math., 160 (1993), pp. 1-18, https://doi.org/10.2140/pjm.1993.160.1 DOI: https://doi.org/10.2140/pjm.1993.160.1

Sz. András and Á. Baricz, Bounds for complete elliptic integrals of the first kind, Expo. Math., 28 (2010) no. 4, pp. 357-364, https://doi.org/10.1016/j.exmath.2009.12.005 DOI: https://doi.org/10.1016/j.exmath.2009.12.005

Y.-M. Chu, M.-K. Wang and Y.-F. Qiu, On Alzer and Qiu's conjecture for complete elliptic integral and inverse hyperbolic tangent function, Abstract and Applied Analysis, article ID. 697547, 2011, pp. 1-7, https://doi.org/10.1155/2011/697547 DOI: https://doi.org/10.1155/2011/697547

S. Ponnusamy and M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika, 44 (1997) no. 2, pp. 278-301, https://doi.org/10.1112/s0025579300012602 DOI: https://doi.org/10.1112/S0025579300012602

Downloads

Published

2012-08-01

Issue

Section

Articles

How to Cite

Kupán, P. A., & Szász, R. (2012). About bounds for the elliptic integral of the first kind. Rev. Anal. Numér. Théor. Approx., 41(2), 149-156. https://doi.org/10.33993/jnaat412-976