About bounds for the elliptic integral of the first kind

Authors

  • Pál A. Kupán Sapientia University, Romania
  • Róbert Szász Sapientia University, Romania

DOI:

https://doi.org/10.33993/jnaat412-976

Keywords:

hypergeometric function, elliptic integral, inequality, bounds
Abstract views: 241

Abstract

We deduce an inequality using elementary methods which makes it possible to prove a conjecture regarding the upper bound of the elliptic integral of the first kind, furthermore we also improve the lower bound.

Downloads

Download data is not yet available.

References

H. Alzer and S.-L. Qiu, Monotonicity theorems and inequalities for the complete elliptic integrals, Journal of Comp. Appl. Math., 172 (2004), pp. 289-312, https://doi.org/10.1016/j.cam.2004.02.009 DOI: https://doi.org/10.1016/j.cam.2004.02.009

G.D. Anderson, M.K. Vamanamurthy and M. Vourinen, Inequalities for quasiconformal mappings in spaces, Pacific J. Math., 160 (1993), pp. 1-18, https://doi.org/10.2140/pjm.1993.160.1 DOI: https://doi.org/10.2140/pjm.1993.160.1

Sz. András and Á. Baricz, Bounds for complete elliptic integrals of the first kind, Expo. Math., 28 (2010) no. 4, pp. 357-364, https://doi.org/10.1016/j.exmath.2009.12.005 DOI: https://doi.org/10.1016/j.exmath.2009.12.005

Y.-M. Chu, M.-K. Wang and Y.-F. Qiu, On Alzer and Qiu's conjecture for complete elliptic integral and inverse hyperbolic tangent function, Abstract and Applied Analysis, article ID. 697547, 2011, pp. 1-7, https://doi.org/10.1155/2011/697547 DOI: https://doi.org/10.1155/2011/697547

S. Ponnusamy and M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika, 44 (1997) no. 2, pp. 278-301, https://doi.org/10.1112/s0025579300012602 DOI: https://doi.org/10.1112/S0025579300012602

Downloads

Published

2012-08-01

How to Cite

Kupán, P. A., & Szász, R. (2012). About bounds for the elliptic integral of the first kind. Rev. Anal. Numér. Théor. Approx., 41(2), 149–156. https://doi.org/10.33993/jnaat412-976

Issue

Section

Articles