About bounds for the elliptic integral of the first kind
DOI:
https://doi.org/10.33993/jnaat412-976Keywords:
hypergeometric function, elliptic integral, inequality, boundsAbstract
We deduce an inequality using elementary methods which makes it possible to prove a conjecture regarding the upper bound of the elliptic integral of the first kind, furthermore we also improve the lower bound.Downloads
References
H. Alzer and S.-L. Qiu, Monotonicity theorems and inequalities for the complete elliptic integrals, Journal of Comp. Appl. Math., 172 (2004), pp. 289-312, https://doi.org/10.1016/j.cam.2004.02.009 DOI: https://doi.org/10.1016/j.cam.2004.02.009
G.D. Anderson, M.K. Vamanamurthy and M. Vourinen, Inequalities for quasiconformal mappings in spaces, Pacific J. Math., 160 (1993), pp. 1-18, https://doi.org/10.2140/pjm.1993.160.1 DOI: https://doi.org/10.2140/pjm.1993.160.1
Sz. András and Á. Baricz, Bounds for complete elliptic integrals of the first kind, Expo. Math., 28 (2010) no. 4, pp. 357-364, https://doi.org/10.1016/j.exmath.2009.12.005 DOI: https://doi.org/10.1016/j.exmath.2009.12.005
Y.-M. Chu, M.-K. Wang and Y.-F. Qiu, On Alzer and Qiu's conjecture for complete elliptic integral and inverse hyperbolic tangent function, Abstract and Applied Analysis, article ID. 697547, 2011, pp. 1-7, https://doi.org/10.1155/2011/697547 DOI: https://doi.org/10.1155/2011/697547
S. Ponnusamy and M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika, 44 (1997) no. 2, pp. 278-301, https://doi.org/10.1112/s0025579300012602 DOI: https://doi.org/10.1112/S0025579300012602
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.