The approximation of bivariate functions by modified bivariate operators and GBS operators associated

Authors

  • Ovidiu T. Pop National College "Mihai Eminescu", Satu Mare, Romania

DOI:

https://doi.org/10.33993/jnaat412-977

Keywords:

linear positive operators, GBS operators, bivariate operators, Voronovskaja-type theorem, approximation theorem, generalized boolean sum operator
Abstract views: 237

Abstract

In this paper we demonstrate a Voronovskaja-type theorem and approximation theorem for a class of modified operators and Generalized Boolean Sum (GBS) associated operators obtained (see (3)) from given operators.

Downloads

Download data is not yet available.

References

C. Badea and C. Cottin, Korovkin-type Theorems for Generalized Boolean Sum Operators, Colloquia Mathematica Societatis János Bolyai, 58, Approximation Theory, Kecskemét (Hungary), 1990, pp. 51-67.

D. Bărbosu, Polynomial Approximation by Means of Schurer-Stancu type Operators, Editura Universităţii de Nord Baia Mare, 2006.

G.H. Kirov, A generalization of the Bernstein polynomials, Math. Balkanica, New Series, 6 (1992) no. 2, pp. 147-153.

O.T. Pop, The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Numér. Théor. Approx., 34 (2005) no. 1, pp. 79-91, http://ictp.acad.ro/jnaat/journal/article/view/2005-vol34-no1-art9

O.T. Pop, About some linear and positive operators defined by infinite sum, Dem. Math., XXXIX (2006) no. 2, pp. 377-388, https://doi.org/10.1515/dema-2006-0216 DOI: https://doi.org/10.1515/dema-2006-0216

O.T. Pop, The generalization of Voronovskaja's theorem for a class of bivariate operators, Studia Univ. "Babeş-Bolyai", Mathematica LIII (2008) no. 2, pp. 85-107.

O.T. Pop, The generalization of Voronovskaja's theorem for a class of bivariate operators defined by infinite sum, Anal. Univ. Oradea, Fasc. Matematica, XV (2008), pp. 155-169.

O.T. Pop, The approximation of bivariate functions by bivariate operators and GBS operators, Rev. Anal. Numé. Théor. Approx., 40 (2011) no. 1, pp. 64-79, http://ictp.acad.ro/jnaat/journal/article/view/2011-vol40-no1-art7

O.T. Pop, About some linear and positive operators, International Journal of Mathematics and Mathematical Sciences, 2007, Article ID91781, 2007, 13 pages, https://doi.org/10.1155/2007/91781 DOI: https://doi.org/10.1155/2007/91781

O.T. Pop, Voronovskaja-type theorems and approximation theorems for a class of GBS operators, Fasciculi Mathematici, 42 (2009), pp. 91-108.

A.F. Timan, Theory of Approximation of Functions of Real Variable, New York: Macmillan Co. 1963, MR22#8257. DOI: https://doi.org/10.1016/B978-0-08-009929-3.50008-7

E. Voronovskaja, Détermination de la forme asymptotique d'approximation des fonctions par les polynômes de M. Bernstein, C. R. Acad. Sci. URSS, 1932, pp. 79-85.

Downloads

Published

2012-08-01

How to Cite

Pop, O. T. (2012). The approximation of bivariate functions by modified bivariate operators and GBS operators associated. Rev. Anal. Numér. Théor. Approx., 41(2), 157–168. https://doi.org/10.33993/jnaat412-977

Issue

Section

Articles