The approximation of bivariate functions by modified bivariate operators and GBS operators associated
DOI:
https://doi.org/10.33993/jnaat412-977Keywords:
linear positive operators, GBS operators, bivariate operators, Voronovskaja-type theorem, approximation theorem, generalized boolean sum operatorAbstract
In this paper we demonstrate a Voronovskaja-type theorem and approximation theorem for a class of modified operators and Generalized Boolean Sum (GBS) associated operators obtained (see (3)) from given operators.Downloads
References
C. Badea and C. Cottin, Korovkin-type Theorems for Generalized Boolean Sum Operators, Colloquia Mathematica Societatis János Bolyai, 58, Approximation Theory, Kecskemét (Hungary), 1990, pp. 51-67.
D. Bărbosu, Polynomial Approximation by Means of Schurer-Stancu type Operators, Editura Universităţii de Nord Baia Mare, 2006.
G.H. Kirov, A generalization of the Bernstein polynomials, Math. Balkanica, New Series, 6 (1992) no. 2, pp. 147-153.
O.T. Pop, The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Numér. Théor. Approx., 34 (2005) no. 1, pp. 79-91, http://ictp.acad.ro/jnaat/journal/article/view/2005-vol34-no1-art9
O.T. Pop, About some linear and positive operators defined by infinite sum, Dem. Math., XXXIX (2006) no. 2, pp. 377-388, https://doi.org/10.1515/dema-2006-0216 DOI: https://doi.org/10.1515/dema-2006-0216
O.T. Pop, The generalization of Voronovskaja's theorem for a class of bivariate operators, Studia Univ. "Babeş-Bolyai", Mathematica LIII (2008) no. 2, pp. 85-107.
O.T. Pop, The generalization of Voronovskaja's theorem for a class of bivariate operators defined by infinite sum, Anal. Univ. Oradea, Fasc. Matematica, XV (2008), pp. 155-169.
O.T. Pop, The approximation of bivariate functions by bivariate operators and GBS operators, Rev. Anal. Numé. Théor. Approx., 40 (2011) no. 1, pp. 64-79, http://ictp.acad.ro/jnaat/journal/article/view/2011-vol40-no1-art7
O.T. Pop, About some linear and positive operators, International Journal of Mathematics and Mathematical Sciences, 2007, Article ID91781, 2007, 13 pages, https://doi.org/10.1155/2007/91781 DOI: https://doi.org/10.1155/2007/91781
O.T. Pop, Voronovskaja-type theorems and approximation theorems for a class of GBS operators, Fasciculi Mathematici, 42 (2009), pp. 91-108.
A.F. Timan, Theory of Approximation of Functions of Real Variable, New York: Macmillan Co. 1963, MR22#8257. DOI: https://doi.org/10.1016/B978-0-08-009929-3.50008-7
E. Voronovskaja, Détermination de la forme asymptotique d'approximation des fonctions par les polynômes de M. Bernstein, C. R. Acad. Sci. URSS, 1932, pp. 79-85.
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.