On Fatou type convergence of higher derivatives of certain nonlinear singular integral operators

Authors

  • Harun Karsli Abant Izzet Baysal University, Turkey
  • H. Erhan Altin Abant Izzet Baysal University, Turkey

DOI:

https://doi.org/10.33993/jnaat421-981

Keywords:

nonlinear singular integral operator, pointwise convergence, Fatou type convergence
Abstract views: 313

Abstract

The present paper concerns with the Fatou type convergence properties of the rth and (r+1)th derivatives of the nonlinear singular integral operators defined as (Iλf)(x)=abKλ(tx,f(t))dt,x(a,b), acting on functions defined on an arbitrary interval (a,b), where the kernel Kλ satisfies some suitable assumptions. The present study is a continuation and extension of the results established in the paper [7].

Downloads

References

C. Bardaro, H. Karsli and G. Vinti, On pointwise convergence of linear integral operators with homogeneous kernels, Integral Transforms and Special Functions, 19(6) (2008), pp. 429-439, https://doi.org/10.1080/10652460801936648 DOI: https://doi.org/10.1080/10652460801936648

C. Bardaro, H. Karsli and G. Vinti, Nonlinear integral operators with homogeneous kernels: pointwise approximation theorems, Applicable Analysis, 90 (2011) No. 3-4, pp. 463-474,https://doi.org/10.1080/00036811.2010.499506. DOI: https://doi.org/10.1080/00036811.2010.499506

C. Bardaro, J. Musielak and G. Vinti, Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, 9 (2003), xii + 201 pp. DOI: https://doi.org/10.1515/9783110199277

Butzer P.L. and R.J. Nessel, Fourier Analysis and Approximation, V.1, Academic Press, New York, London, 1971. DOI: https://doi.org/10.1007/978-3-0348-7448-9_1

A.D. Gadjiev, On convergence of integral operators depending on two parameters, Dokl. Acad. Nauk. Azerb. SSR, XIX (1963) No. 12, pp. 3-7.

H. Karsli, Convergence and rate of convergence by nonlinear singular integral operators depending on two parameters, Applicable Analysis, 85 (2006) No. 6-7, pp. 781-791, https://doi.org/10.1080/00036810600712665 DOI: https://doi.org/10.1080/00036810600712665

H. Karsli, Convergence of the derivatives of nonlinear singular integral operators, J. Math. Anal. Approx. Theory, 2 (2007) No. 1, pp. 53-61.

H. Karsli, On approximation properties of a class of convolution type nonlinear singular integral operators, Georgian Math. Jour., 15 (2008), No. 1, pp. 77-86. DOI: https://doi.org/10.1515/GMJ.2008.77

H. Karsli and Gupta V., Rate of convergence by nonlinear integral operators for functions of bounded variation, Calcolo, 45, (2) (2008), pp. 87-99, https://doi.org/10.1007/s10092-008-0145-4 DOI: https://doi.org/10.1007/s10092-008-0145-4

J. Musielak, On some approximation problems in modular spaces. In Constructive Function Theory 1981 ( Proc. Int. Conf. Varna, June 1-5, 1981), pp. 455-461, Publ. House Bulgarian Acad. Sci., Sofia 1983.

T. Swiderski and E. Wachnicki, Nonlinear Singular Integrals depending on two parameters, Commentationes Math., XL (2000), pp. 181-189.

R. Taberski, Singular integrals depending on two parameters, Rocznicki Polskiego towarzystwa matematycznego, Seria I. Prace matematyczne, VII (1962), pp. 173-179.

Downloads

Published

2013-02-01

Issue

Section

Articles

How to Cite

Karsli, H., & Altin, H. E. (2013). On Fatou type convergence of higher derivatives of certain nonlinear singular integral operators. Rev. Anal. Numér. Théor. Approx., 42(1), 37-48. https://doi.org/10.33993/jnaat421-981