Sharp inequalities for the Neuman-Sandor mean in terms of arithmetic and contra-harmonic means

Authors

  • Yu-Ming Chu Huzhou Teachers College, China
  • Miao-Kun Wang Huzhou Teachers College, China
  • Bao-Yu Liu Hangzhou Dianzi University, China

DOI:

https://doi.org/10.33993/jnaat422-987

Keywords:

Neuman-Sándor mean, arithmetic mean, contra-harmonic mean
Abstract views: 236

Abstract

In this paper, we find the greatest values \(\alpha\) and \(\lambda\), and the least values \(\beta\) and \(\mu\) such that the double inequalities \[C^{\alpha}(a,b)A^{1-\alpha}(a,b)<M(a,b)<C^{\beta}(a,b)A^{1-\beta}(a,b)\] and \begin{align*} &[C(a,b)/6+5 A(a,b)/6]^{\lambda }\left[C^{1/6}(a,b)A^{5/6}(a,b)\right]^{1-\lambda}<M(a,b)<\\ &\qquad<[C(a,b)/6+5 A(a,b)/6]^{\mu}\left[C^{1/6}(a,b)A^{5/6}(a,b)\right]^{1-\mu} \end{align*} hold for all \(a,b>0\) with \(a\neq b\), where \(M(a,b)\), \(A(a,b)\) and \(C(a,b)\) denote the Neuman-Sándor, arithmetic, and contra-harmonic means of \(a\) and \(b\), respectively.

Downloads

Download data is not yet available.

References

E. Neuman and J. Sándor, On the Schwab-Borchardt mean, Math. Pannon., 14 (2003) no. 2, pp. 253-266.

E. Neuman and J. Sándor, On the Schwab-Borchardt mean II, Math. Pannon., 17 (2006) no. 1, pp. 49-59.

Y. M. Li, B. Y. Long and Y. M. Chu, Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean, J. Math. Inequal., 6 (2012) no. 4, pp. 567-577. DOI: https://doi.org/10.7153/jmi-06-54

E. Neuman A note on certain bivariate mean, J. Math. Inequal., 6 (2012) no. 4, pp. 637-643. DOI: https://doi.org/10.7153/jmi-06-62

G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, New York: John Wiley & Sons, 1997.

S. Simić and M. Vuorinen, Landen inequalities for zero-balanced hypergeometric functions, Abstr. Appl. Anal., Art. ID 932061, 11 pp., 2012. DOI: https://doi.org/10.1155/2012/932061

Downloads

Published

2013-08-01

Issue

Section

Articles

How to Cite

Chu, Y.-M., Wang, M.-K., & Liu, B.-Y. (2013). Sharp inequalities for the Neuman-Sandor mean in terms of arithmetic and contra-harmonic means. Rev. Anal. Numér. Théor. Approx., 42(2), 115-120. https://doi.org/10.33993/jnaat422-987