Sharp inequalities for the Neuman-Sandor mean in terms of arithmetic and contra-harmonic means
DOI:
https://doi.org/10.33993/jnaat422-987Keywords:
Neuman-Sándor mean, arithmetic mean, contra-harmonic meanAbstract
In this paper, we find the greatest values \(\alpha\) and \(\lambda\), and the least values \(\beta\) and \(\mu\) such that the double inequalities \[C^{\alpha}(a,b)A^{1-\alpha}(a,b)<M(a,b)<C^{\beta}(a,b)A^{1-\beta}(a,b)\] and \begin{align*} &[C(a,b)/6+5 A(a,b)/6]^{\lambda }\left[C^{1/6}(a,b)A^{5/6}(a,b)\right]^{1-\lambda}<M(a,b)<\\ &\qquad<[C(a,b)/6+5 A(a,b)/6]^{\mu}\left[C^{1/6}(a,b)A^{5/6}(a,b)\right]^{1-\mu} \end{align*} hold for all \(a,b>0\) with \(a\neq b\), where \(M(a,b)\), \(A(a,b)\) and \(C(a,b)\) denote the Neuman-Sándor, arithmetic, and contra-harmonic means of \(a\) and \(b\), respectively.Downloads
References
E. Neuman and J. Sándor, On the Schwab-Borchardt mean, Math. Pannon., 14 (2003) no. 2, pp. 253-266.
E. Neuman and J. Sándor, On the Schwab-Borchardt mean II, Math. Pannon., 17 (2006) no. 1, pp. 49-59.
Y. M. Li, B. Y. Long and Y. M. Chu, Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean, J. Math. Inequal., 6 (2012) no. 4, pp. 567-577. DOI: https://doi.org/10.7153/jmi-06-54
E. Neuman A note on certain bivariate mean, J. Math. Inequal., 6 (2012) no. 4, pp. 637-643. DOI: https://doi.org/10.7153/jmi-06-62
G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, New York: John Wiley & Sons, 1997.
S. Simić and M. Vuorinen, Landen inequalities for zero-balanced hypergeometric functions, Abstr. Appl. Anal., Art. ID 932061, 11 pp., 2012. DOI: https://doi.org/10.1155/2012/932061
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.