Localization results for the Lagrange max-product interpolation operator based on equidistant knots

Authors

  • Lucian Coroianu University of Oradea, Romania
  • Sorin G. Gal University of Oradea, Romania

DOI:

https://doi.org/10.33993/jnaat422-988

Keywords:

Lagrange max-product interpolation operator, localization result, local direct approximation result, Lipschitz function on subintervals
Abstract views: 377

Abstract

In the class of strictly positive functions strong localization results are obtained in approximation by the Lagrange max-product interpolation operators based on equidistant nodes. The results allow to approximate locally bounded strictly positive functions with very good accuracy. Then, it is observed that the results can be extended to bounded functions of variable sign.

Downloads

Download data is not yet available.

References

B. Bede and S.G. Gal, Approximation by nonlinear Bernstein and Favard-Szász-Mirakjan operators of max-product kind, J. Concr. Applicable Math., 8 (2010), no. 2, pp. 193-207.

B. Bede, L. Coroianu and S.G. Gal, Approximation and shape preserving properties of the Bernstein operator of max-product kind, Intern. J. Math. Math. Sci., 2009 (2009), Article ID 590589, 26 pages. http://doi.org/10.1155/2009/590589. DOI: https://doi.org/10.1155/2009/590589

B. Bede, L. Coroianu and S.G. Gal, Approximation by truncated Favard-Szász-Mirakjan operator of max-product kind, Demonstratio Mathematica, XLIV (2011), no. 1, pp. 105-122. DOI: https://doi.org/10.1515/dema-2013-0300

B. Bede, L. Coroianu and S.G. Gal, Approximation and shape preserving properties of the nonlinear Bleimann-Butzer-Hahn operators of max-product kind, Comment. Math. Univ. Carol., 51 (2010), no. 3, pp. 397-415.

B. Bede, L. Coroianu and S.G. Gal, Approximation and shape preserving properties of the nonlinear Meyer-Konig and Zeller operator of max-product kind, Numer. Funct. Anal. Optim., 31 (2010), no. 3, pp. 232-25. DOI: https://doi.org/10.1080/01630561003757686

B. Bede, L. Coroianu and S.G. Gal, Approximation and shape preserving properties of the truncated Baskakov operator of max-product kind, Revista Union Mat. Argentina, 52 (2011), no. 1, pp. 89-107.

B. Bede, L. Coroianu and S.G. Gal, Approximation and shape preserving properties of the nonlinear Baskakov operator of max-product kind, Studia Univ. Babes-Bolyai, Ser. Math., LV (2010), pp. 193-218. DOI: https://doi.org/10.2298/FIL1003055B

S. Cobzaş and I. Muntean, Condensation of singularities and divergence results in approximation theory, J. Approx. Theory, 31 (1980), no. 2, pp. 138-153. DOI: https://doi.org/10.1016/0021-9045(81)90038-1

L. Coroianu and S.G. Gal, Approximation by nonlinear Lagrange interpolation operators of max-product kind on Chebyshev knots of second kind, J. Comp. Anal. Appl., 13 (2010), no. 2, pp. 211-224.

L. Coroianu and S.G. Gal, Approximation by nonlinear Hermite-Fejér interpolation operators of max-product kind on Chebyshev nodes, Rev. Anal. Numér. Théor. Approx. (Cluj), 39 (2010), no. 1, pp. 29-39, http://ictp.acad.ro/jnaat/journal/article/view/2010-vol39-no1-art

L. Coroianu and S.G. Gal, Approximation by max-product Lagrange interpolation operators, Studia Univ. "Babes-Bolyai", Ser. Math., LVI (2011), no. 2, pp. 1-11.

L. Coroianu and S.G. Gal, Classes of functions with improved estimates in approximation by the max-product Bernstein operator, Anal. Appl. (Singapore), 9 (2011), no. 3, pp. 249-274. DOI: https://doi.org/10.1142/S0219530511001856

L. Coroianu and S.G. Gal, Saturation results for the Lagrange max-product interpolation operator based on equidistant knots, Rev. Anal. Numér. Théor. Approx. (Cluj), 41 (2012), no. 1, pp. 27-41, http://ictp.acad.ro/jnaat/journal/article/view/2012-vol41-no1-art3

S.G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, Birkhäuser, Boston-Basel-Berlin, 2008. DOI: https://doi.org/10.1007/978-0-8176-4703-2

T. Hermann and P. Vértesi, On the method of Somorjai, Acta Math. Hung., 54 (1989) no. (3-4), pp. 253-262. DOI: https://doi.org/10.1007/BF01952055

I. Muntean, The Lagrange interpolation operators are densely divergent, Studia Univ. "Babes-Bolyai" (Cluj), Ser. Math., 21 (1976), pp. 28-30.

J. Szabados and P. Vértesi, Interpolation of Functions, World Scientific, Singapore, New Jersey, London, Hong Kong, 1990. DOI: https://doi.org/10.1142/0861

Downloads

Published

2013-08-01

Issue

Section

Articles

How to Cite

Coroianu, L., & Gal, S. G. (2013). Localization results for the Lagrange max-product interpolation operator based on equidistant knots. Rev. Anal. Numér. Théor. Approx., 42(2), 121-131. https://doi.org/10.33993/jnaat422-988