Some estimations for the Taylor's remainder

Authors

  • Hui Sun Hunan City University, China
  • Bo-Yong Long Huzhou Teachers College, China
  • Yu-Ming Chu Huzhou Teachers College, China

DOI:

https://doi.org/10.33993/jnaat422-991

Keywords:

Taylor remainder, Grüss inequality, Cheyshev inequality
Abstract views: 237

Abstract

In this paper, we establish several integral inequalities for the Taylor's remainder by Grüss and Cheyshev inequalities.

Downloads

Download data is not yet available.

References

G. Grüss, Über das Maximum des absoluten Betrages von (1/(b-a))∫abf(x)g(x)dx-(1/((b-a)²))∫abf(x)dx∫abg(x)dx, Math. Z., 39(1) (1935), pp. 215-226, https://doi.org/10.1007/bf01201355 DOI: https://doi.org/10.1007/BF01201355

D. S. Mitrinović, J. E. Pecarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers Group, Dordrecht, 1993. DOI: https://doi.org/10.1007/978-94-017-1043-5

S. S. Dragomir, New estimation of the remainder in Taylor's formula using Grüss' type inequalities and applications, Math. Inequal. Appl., 2(2)(1999), pp. 183-193, https://doi.org/10.7153/mia-02-16 DOI: https://doi.org/10.7153/mia-02-16

G. A. Anastassiou and S. S. Dragomir, On some estimates of the remainder in Taylor's Formula, J. Math. Anal. Appl., 263(1)(2001), pp. 246-263. https://doi.org/10.1006/jmaa.2001.7622 DOI: https://doi.org/10.1006/jmaa.2001.7622

H. Gauchman, Some integral inequalities involving Taylor's remainder I, JIPAM. J. Inequal. Pure Appl. Math., 3(2), Article 26, 9 pages, 2002.

H. Gauchman, Some integral inequalities involving Taylor's remainder II, JIPAM. J. Inequal. Pure Appl. Math., 4(1), Article 1, 5 pages, 2003.

L. Bougoffa, Some estimations for the integral Taylor's remainder, JIPAM. J. Inequal. Pure Appl. Math., 4(5), Article 84, 4 pages, 2003.

D.-Y. Hwang, Improvements of some integral inequalities involving Taylor's remainder, J. Appl. Math. Comput., 16(1-2)(2004), pp. 151-163, https://doi.org/10.1007/bf02936158 DOI: https://doi.org/10.1007/BF02936158

E. Talvila, Estimates of the remainder in Taylor's theorem using the Henstock-Kurzweil integral, Czechoslovak Math. J., 55(4) (2005), pp. 933-940, https://doi.org/10.1007/s10587-005-0077-y DOI: https://doi.org/10.1007/s10587-005-0077-y

Downloads

Published

2013-08-01

How to Cite

Sun, H., Long, B.-Y., & Chu, Y.-M. (2013). Some estimations for the Taylor’s remainder. Rev. Anal. Numér. Théor. Approx., 42(2), 161–169. https://doi.org/10.33993/jnaat422-991

Issue

Section

Articles