Third order convergence theorem for a family of Newton like methods in Banach space

Authors

  • Tugal Zhanlav National University of Mongolia, Mongolia
  • Dorjgotov Khongorzul National University of Mongolia, Mongolia

DOI:

https://doi.org/10.33993/jnaat431-996

Keywords:

nonlinear equations in Banach space, third order Newton like methods, recurrence relations, error bounds, convergence domain
Abstract views: 284

Abstract

In this paper, we propose a family of Newton-like methods in Banach space which includes some well known third-order methods as particular cases. We establish the Newton-Kantorovich type convergence theorem for a proposed family and get an error estimate.

Downloads

Download data is not yet available.

References

D. K. R. Babajee, M.Z. Dauhoo, M.T. Darvishi, A. Karami and A. Barati, Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations, J. Comput. Appl. Math., 233 (2010), pp. 2002-2012, https://doi.org/10.1016/j.cam.2009.09.035 DOI: https://doi.org/10.1016/j.cam.2009.09.035

M. Frontini and E. Sormani, Third-order methods from quadrature formulae for solving systems of nonlinear equations, Appl. Math. Comput., 149 (2004), pp. 771-782, https://doi.org/10.1016/s0096-3003(03)00178-4 DOI: https://doi.org/10.1016/S0096-3003(03)00178-4

M.A. Hernandez, Second derivative free variant of the Chebyshev method for nonlinear equations, J. Optimization theory and applications, 104 (2000), pp. 501-514,https://doi.org/10.1023/a:1004618223538 DOI: https://doi.org/10.1023/A:1004618223538

M.A. Hernandez, M.A. Salanova, Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method, J. Comput. Appl. Math, 126, pp. 131-143, 2000, https://doi.org/10.1016/s0377-0427(99)00347-7 DOI: https://doi.org/10.1016/S0377-0427(99)00347-7

H.H.H. Homeier, On Newton type methods with cubic convergence, J. Comput. Appl. Math., 176 (2005), pp. 425-432, https://doi.org/10.1016/j.cam.2004.07.027 DOI: https://doi.org/10.1016/j.cam.2004.07.027

J.L. Hueso, E. Martinez, J.R. Torregrosa, Third order iterative methods free from second derivative, Appl. Math. Comput., 215 (2009), pp. 58-65, https://doi.org/10.1016/j.amc.2009.04.046 DOI: https://doi.org/10.1016/j.amc.2009.04.046

Q. Wu, Y. Zhao, Third order convergence theorem by using majorizing function for a modified Newton method in Banach space, Appl. Math. Comput., 175 (2006), pp. 1515-1524, https://doi.org/10.1016/j.amc.2005.08.043 DOI: https://doi.org/10.1016/j.amc.2005.08.043

T. Zhanlav, Note on the cubic decreasing region of the Chebyshev method, J. Comput. Appl. Math, 235 (2010), pp. 341-344, https://doi.org/10.1016/j.cam.2010.05.034 DOI: https://doi.org/10.1016/j.cam.2010.05.034

T. Zhanlav, O. Chuluunbaatar, Higher order convergent iteration methods for solving nonlinear equations, Bulletin of People's Friendship University of Russia, 4 (2009), pp. 47-55.

T. Zhanlav, D. Khongorzul, Semilocal convergence with R-order three theorems for the Chebyshev method and its modifications, Optimization, Simulation and Control, Springer, pp. 331-345, 2012, https://doi.org/10.1007/978-1-4614-5131-0_21 DOI: https://doi.org/10.1007/978-1-4614-5131-0_21

Downloads

Published

2014-02-01

How to Cite

Zhanlav, T., & Khongorzul, D. (2014). Third order convergence theorem for a family of Newton like methods in Banach space. Rev. Anal. Numér. Théor. Approx., 43(1), 81–90. https://doi.org/10.33993/jnaat431-996

Issue

Section

Articles