Third order convergence theorem for a family of Newton like methods in Banach space
DOI:
https://doi.org/10.33993/jnaat431-996Keywords:
nonlinear equations in Banach space, third order Newton like methods, recurrence relations, error bounds, convergence domainAbstract
In this paper, we propose a family of Newton-like methods in Banach space which includes some well known third-order methods as particular cases. We establish the Newton-Kantorovich type convergence theorem for a proposed family and get an error estimate.Downloads
References
D. K. R. Babajee, M.Z. Dauhoo, M.T. Darvishi, A. Karami and A. Barati, Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations, J. Comput. Appl. Math., 233 (2010), pp. 2002-2012, https://doi.org/10.1016/j.cam.2009.09.035 DOI: https://doi.org/10.1016/j.cam.2009.09.035
M. Frontini and E. Sormani, Third-order methods from quadrature formulae for solving systems of nonlinear equations, Appl. Math. Comput., 149 (2004), pp. 771-782, https://doi.org/10.1016/s0096-3003(03)00178-4 DOI: https://doi.org/10.1016/S0096-3003(03)00178-4
M.A. Hernandez, Second derivative free variant of the Chebyshev method for nonlinear equations, J. Optimization theory and applications, 104 (2000), pp. 501-514,https://doi.org/10.1023/a:1004618223538 DOI: https://doi.org/10.1023/A:1004618223538
M.A. Hernandez, M.A. Salanova, Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method, J. Comput. Appl. Math, 126, pp. 131-143, 2000, https://doi.org/10.1016/s0377-0427(99)00347-7 DOI: https://doi.org/10.1016/S0377-0427(99)00347-7
H.H.H. Homeier, On Newton type methods with cubic convergence, J. Comput. Appl. Math., 176 (2005), pp. 425-432, https://doi.org/10.1016/j.cam.2004.07.027 DOI: https://doi.org/10.1016/j.cam.2004.07.027
J.L. Hueso, E. Martinez, J.R. Torregrosa, Third order iterative methods free from second derivative, Appl. Math. Comput., 215 (2009), pp. 58-65, https://doi.org/10.1016/j.amc.2009.04.046 DOI: https://doi.org/10.1016/j.amc.2009.04.046
Q. Wu, Y. Zhao, Third order convergence theorem by using majorizing function for a modified Newton method in Banach space, Appl. Math. Comput., 175 (2006), pp. 1515-1524, https://doi.org/10.1016/j.amc.2005.08.043 DOI: https://doi.org/10.1016/j.amc.2005.08.043
T. Zhanlav, Note on the cubic decreasing region of the Chebyshev method, J. Comput. Appl. Math, 235 (2010), pp. 341-344, https://doi.org/10.1016/j.cam.2010.05.034 DOI: https://doi.org/10.1016/j.cam.2010.05.034
T. Zhanlav, O. Chuluunbaatar, Higher order convergent iteration methods for solving nonlinear equations, Bulletin of People's Friendship University of Russia, 4 (2009), pp. 47-55.
T. Zhanlav, D. Khongorzul, Semilocal convergence with R-order three theorems for the Chebyshev method and its modifications, Optimization, Simulation and Control, Springer, pp. 331-345, 2012, https://doi.org/10.1007/978-1-4614-5131-0_21 DOI: https://doi.org/10.1007/978-1-4614-5131-0_21
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.