Certain properties for a class of analytic functions associated with hypergeometric functions


  • Khadeejah R. Alhindi Universiti Kebangsaan Malaysia
  • Maslina Darus Universiti Kebangsaan Malaysia


analytic function, coefficient inequalities, Schwarz inequality, closure theorems, Hadamard product, convolution properties, integral operator


In this particular paper, we investigate coefficient inequalities, closure theorems, convolution properties for the functions belonging to the class \( \mathcal{S}^{m,r,s}_{\lambda_1,\lambda_2}(\eta)\). Further, integral transforms of functions in the same class are also discussed.


Download data is not yet available.


J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103(1) (1999), pp. 1-13, http://dx.doi.org/10.1016/S0096-3003(98)10042-5

M. H. Al-Abbadi and M. Darus, Differential subordination for new generalized derivative operator, Acta Univ. Apulensis, 20 (2009), pp. 265-280.

Yu. E. Hohlov, Operators and operations in the class of univalent functions, Izv. Vyssh. Uchebn. Zaved. Mat., 10(10) (1978), pp. 83-89.

B. C. Carlson and D. B. Shaffer, Starlike and prestar like hypergeometric function, SIAM J. Math. Anal., 15(4) (1984), pp. 737-745, 1984, http://dx.doi.org/10.1137/0515057

S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), pp. 109-115, http://dx.doi.org/10.1090/S0002-9939-1975-0367176-1

K. Al-Shaqsi and M. Darus, On univalent functions with respect to the k-symmetric points defined by a generalization Ruscheweyh derivative operators, Jour. Anal. Appl., 7(1) (2009), pp. 53-61.

K. Al-Shaqsi and M. Darus, Differential Subordination with generalized derivative operator, Int. J. Comp. Math. Sci., 2(2) (2008), pp. 75-78.

J. Nishiwaki and S. Owa, Convolutions for certain analytic functions, Gen. Math., 15 (2007), no. 2-3, pp. 38-51.




How to Cite

Alhindi, K. R., & Darus, M. (2014). Certain properties for a class of analytic functions associated with hypergeometric functions. Rev. Anal. Numér. Théor. Approx., 43(2), 103–112. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/2014-vol43-no2-art2