Some properties of the operators defined by Lupaș
DOI:
https://doi.org/10.33993/jnaat432-1027Keywords:
orthogonal polynomials, spectral method, error estimate, condition number, programming, Lupas operatorAbstract
In the present paper, we show that a subclass of the operators defined by Lupaș [12] preserve properties of the modulus of continuity function and Lipschitz constant and the order of a Lipschitz continuous function. We are also concerned with the monotonicity of a sequence of such operators for convex functions.Downloads
References
U. Abel and M. Ivan, On a generalization of an approximation operator defined by A. Lupaş, Gen. Math., 15 (2007) no. 1, pp. 21-34.
T. Acar and A. Aral, Approximation properties of two dimensional Bernstein-Stancu-Chlodowsky operators, Matematiche (Catania), 68 (2013) no. 2, pp. 15-31, http://dx.doi.org/10.4418/2013.68.2.2
O. Agratini, On a sequence of linear positive operators, Facta Univ. Ser. Math. Inform., 14 (1999), pp. 41-48.
B. M. Brown, D. Elliott and D.F. Paget, Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory, 49 (1987) no. 2, pp. 196-199, http://dx.doi.org/10.1016/0021-9045(87)90087-6 DOI: https://doi.org/10.1016/0021-9045(87)90087-6
F. Dirik, Statistical convergence and rate of convergence of a sequence of positive linear operators, Math. Commun., 12 (2007) no. 2, pp. 147-153.
A. Erençin and F. Taşdelen, On a family of linear and positive operators in weighted spaces, JIPAM. J. Inequal. Pure Appl. Math., 8 (2007) no. 2, Article 39, 6 pp.
A. Erençin and F. Taşdelen, On certain Kantorovich type operators, Fasc. Math., (2009) no. 41, pp. 65-71.
A. Erençin, G. Başcanbaz-Tunca and F. Taşdelen, Some preservation properties of MKZ-Stancu type operators, Sarajevo J. Math., 10 (22) (2014) no. 1, pp. 93-102. DOI: https://doi.org/10.5644/SJM.10.1.12
G.C. Jain and S. Pethe, On the generalizations of Bernstein and Szasz-Mirakjan operators, Nanta Math., 10 (1977) no. 2, pp. 185-193.
M. K. Khan and M. A. Peters, Lipschitz constants for some approximation operators of a Lipschitz continuous function, J. Approx. Theory, 59 (1989) no. 3, pp. 307-315, http://dx.doi.org/10.1016/0021-9045(89)90096-8 DOI: https://doi.org/10.1016/0021-9045(89)90096-8
Zhongkai Li, Bernstein polynomials and modulus of continuity, J. Approx. Theory, 102 (2000) no. 1, pp. 171-174, http://dx.doi.org/10.1006/jath.1999.3374 DOI: https://doi.org/10.1006/jath.1999.3374
A. Lupaş, The approximation by some positive linear operators, In: Proceedings of the International Dortmund Meeting on Approximation Theory (M.W. Müller et al., eds.), Akademie Verlag, Berlin, (1995), pp. 201-229.
H. N. Mhaskar and D. V. Pai, Fundamentals of approximation theory, CRC Press, Boca Raton, FL; Narosa Publishing House, New Delhi, 2000.
S. Tarabie, On some A-statistical approximation processes, Int. J. Pure Appl. Math., 76 (2012) no. 3, pp. 327-332.
T. Trif, An elementary proof of the preservation of Lipschitz constants by the Meyer-König and Zeller operators, JIPAM. J. Inequal. Pure Appl. Math., 4 (2003) no. 5, Article 90, 3 pp.
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.