On -statistical convergence in random 2-normed space

Authors

  • Ayhan Esi Adiyaman University, Turkey

DOI:

https://doi.org/10.33993/jnaat432-1028

Keywords:

statistical convergence, λ-statistical convergence, t-norm, 2-norm, random 2-normed space
Abstract views: 307

Abstract

Recently in [19], Mursaleen introduced the concepts of statistical convergence in random 2-normed spaces. In this paper, we define and study the notion of -statistical convergence and -statistical Cauchy sequences by using λ-sequences in random 2-normed spaces and we prove some theorems.

Downloads

References

C. Alsina, B. Schweizer and A. Sklar, Continuity properties of probabilistic norms, J. Math. Anal. Appl., 208 (1997), pp. 446-452, http://dx.doi.org/10.1006/jmaa.1997.5333 DOI: https://doi.org/10.1006/jmaa.1997.5333

H. Çakalli, A study on statistical convergence, Funct. Anal. Approx. Comput., 1(2) (2009), pp. 19-24, MR2662887.

J.Connor and M.A. Swardson, Measures and ideals of C∗(X), Ann. N. Y. Acad. Sci., 704 (1993), pp. 80--91. DOI: https://doi.org/10.1111/j.1749-6632.1993.tb52511.x

A. Esi and M. K. Özdemir, Generalized Δm-Statistical convergence in probabilistic normed space, J. Comput. Anal. Appl., 13(5) (2011), pp. 923-932.

H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), pp. 241-244. DOI: https://doi.org/10.4064/cm-2-3-4-241-244

J. A. Fridy, On statistical convergence, Analysis, 5 (1985) pp. 301--313. DOI: https://doi.org/10.1524/anly.1985.5.4.301

S. Gähler, 2-metrische Raume and ihre topologische Struktur, Math. Nachr., 26 (1963), pp. 115-148, http://dx.doi.org/10.1002/mana.19630260109 DOI: https://doi.org/10.1002/mana.19630260109

I . Goleţ, On probabilistic 2-normed spaces, Novi Sad J. Math., 35 (2006), pp. 95-102.

M. Gürdal and S. Pehlivan, Statistical convergence in 2-normed spaces, South. Asian Bull. Math., 33 (2009), pp. 257-264.

M. Gürdal and S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math., 2(1) (2004), pp. 107-113.

S. Karakus, Statistical convergence on probabilistic normed spaces, Math. Commun., 12 (2007), pp. 11-23. DOI: https://doi.org/10.1155/2007/14737

S. Karakus, K. Demirci and O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals, 35 (2008), pp. 763-769, http://dx.doi.org/10.1016/j.chaos.2006.05.046 DOI: https://doi.org/10.1016/j.chaos.2006.05.046

V. Kumar and M. Mursaleen, On (λ,μ)-statistical convergence of double sequences on intuitionistic fuzzy normed spaces, Filomat, 25(2) (2011), pp. 109-120. DOI: https://doi.org/10.2298/FIL1102109K

L. Leindler, Uber die de la Vallee-Pousinsche Summierbarkeit allgenmeiner Othogonalreihen, Acta Math. Acad. Sci. Hungar, 16 (1965), pp. 375-387. DOI: https://doi.org/10.1007/BF01904844

I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc., 104(1) (1988), pp. 141-145, http://dx.doi.org/10.1017/S0305004100065312 DOI: https://doi.org/10.1017/S0305004100065312

G. D. Maio and L. D. R. Kočinac, Statistical convergence in topology, Topology Appl., 156 (2008), pp. 28-45, http://dx.doi.org/10.1016/j.topol.2008.01.015 DOI: https://doi.org/10.1016/j.topol.2008.01.015

K. Menger, Statistical metrics, Proc. Natl. Acad. Sci. USA, 28 (1942), pp. 535-537. DOI: https://doi.org/10.1073/pnas.28.12.535

H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347(5) (1995), pp. 1811-1819. DOI: https://doi.org/10.1090/S0002-9947-1995-1260176-6

M. Mursaleen, Statistical convergence in random 2-normed spaces, Acta Sci. Math. (Szeged), 76(1-2) (2010), pp. 101-109. DOI: https://doi.org/10.1007/BF03549823

M. Mursaleen, λ-statistical convergence, Mathematica Slovaca, 50(1) (2000), pp. 111-115.

M. Mursaleen and A. K. Noman, On the spaces of λ-convergent and bounded sequences, Thai J. Math., 8(2) (2010), pp. 311-329.

M. Mursaleen and A. Alotaibi, Statistical summability and approximation by de la Vallee-Pousin mean, Applied Math. Letters, 24 (2011), pp. 320—324, http://dx.doi.org/10.1016/j.aml.2010.10.014 DOI: https://doi.org/10.1016/j.aml.2010.10.014

M. Mursaleen, C. Çakan, S. A. Mohiuddine and E. Savaş, Generalized statistical convergence and statistical core of double sequences, Acta Math. Sinica, 26(11) (2010), pp. 2131-2144, http://dx.doi.org/10.1007/s10114-010-9050-2 DOI: https://doi.org/10.1007/s10114-010-9050-2

M. Mursaleen and Osama H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), pp. 223-231, http://dx.doi.org/10.1016/j.jmaa.2003.08.004 DOI: https://doi.org/10.1016/j.jmaa.2003.08.004

M. Mursaleen and Osama H. H. Edely, Generalized statistical convergence, Information Sciences, 162 (2004), pp. 287-294. DOI: https://doi.org/10.1016/j.ins.2003.09.011

M. Mursaleen and Osama H. H. Edely, On the invariant mean and statistical convergence, Appl. Math. Letters, 22 (2009), pp. 1700-1704, http://dx.doi.org/10.1016/j.aml.2009.06.005 DOI: https://doi.org/10.1016/j.aml.2009.06.005

S. A. Mohiuddine and Q.M. Danish Lohani, On generalized statistical convergence in intuitionistic fuzzy normed space, Chaos, Solitons and Fractals, 42 (2009), pp. 1731-1737, http://dx.doi.org/10.1016/j.chaos.2009.03.086 DOI: https://doi.org/10.1016/j.chaos.2009.03.086

M. Mursaleen and S.A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Appl. Math., 233(2) (2009), pp. 142-149, http://dx.doi.org/10.1016/j.cam.2009.07.005 DOI: https://doi.org/10.1016/j.cam.2009.07.005

T. Salát, On statistical convergence sequences of real numbers, Math. Slovaca, 30 (1980), pp. 139-150.

I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), pp. 361-375. DOI: https://doi.org/10.2307/2308747

B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), pp. 313-334. DOI: https://doi.org/10.2140/pjm.1960.10.313

B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North Holland, New York- Amsterdam-Oxford, 1983.

C. Sempi, A short and partial history of probabilistic normed spaces, Mediterr. J. Math., 3 (2006), pp. 283-300, http://dx.doi.org/10.1007/s00009-006-0078-6 DOI: https://doi.org/10.1007/s00009-006-0078-6

C. Şençimen and S. Pehlivan, Statistical convergence in fuzzy normed linear spaces, Fuzzy Sets and Systems, 159 (2008), pp. 361-370, http://dx.doi.org/10.1016/j.fss.2007.06.008 DOI: https://doi.org/10.1016/j.fss.2007.06.008

A. N. Serstnev, On the notion of a random normed space, Dokl. Akad. Nauk SSSR 149 (1963), pp. 280-283.

On generalized statistical convergence in random 2-normed space, Iranian Journal of Science & Technology, (2012) A4: 417-423. DOI: https://doi.org/10.1186/1029-242X-2012-209

Downloads

Published

2014-08-01

Issue

Section

Articles

How to Cite

Esi, A. (2014). On -statistical convergence in random 2-normed space. Rev. Anal. Numér. Théor. Approx., 43(2), 175-186. https://doi.org/10.33993/jnaat432-1028