Weighted quadrature formulas for semi-infinite range integrals

Authors

DOI:

https://doi.org/10.33993/jnaat441-1063

Keywords:

Gaussian quadrature rules, nodes, Christoffel numbers, non-exponentially decreasing integrands.
Abstract views: 458

Abstract

Weighted quadrature formulas on the half line (a,+), a>0, for non-exponentially decreasing integrands are developed. Such n-point quadrature rules are exact for all functions of the form xx2P(x1), where P is an arbitrary algebraic polynomial of degree at most 2n1. In particular, quadrature formulas with respect to the weight function xw(x)=xβlogmx (0β<1, mN0) are considered and several numerical examples are included.

Downloads

References

A.S. Cvetkovic and G.V. Milovanovic, The Mathematica Package “Orthogonal Polynomials”, Facta Univ. Ser. Math. Inform.,19, pp. 17-36, 2004.

G.A. Evans, Some new thoughts on Gauss-Laguerre quadrature, Int. J. Comput. Math. 82, pp. 721-730, 2005. http://doi.org/10.1080/00207160512331323399 DOI: https://doi.org/10.1080/00207160512331323399

W. Gautschi, On generating orthogonal polynomials , SIAM J. Sci. Statist. Comput., 3, pp. 289–317, 1982. http:// doi.org/10.1137/0903018 DOI: https://doi.org/10.1137/0903018

W. Gautschi, Algorithm 726: ORTHPOL – A package of routines for generating orthogonal polynomials and Gauss-type quadrature rules, ACM Trans. Math. Software, 20, pp. 21-62, 1994. http://doi.org/10.1145/174603.174605 DOI: https://doi.org/10.1145/174603.174605

W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Clarendon Press, Oxford, 2004. DOI: https://doi.org/10.1093/oso/9780198506720.001.0001

W. Gautschi, Gauss quadrature routines for two classes of logarithmic weight functions, Numer. Algor. 55, pp. 265-277, 2010. http://doi.org/10.1007/s11075-010-9366-0 DOI: https://doi.org/10.1007/s11075-010-9366-0

G. Golub and J.H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23, pp. 221–230, 1969. http://doi.org/10.2307/2004418 DOI: https://doi.org/10.1090/S0025-5718-69-99647-1

A. Markov, Sur la méthode de Gauss pour le calcul approché des intégrales , Math. Ann., 25, pp. 427 432, 1885. http://doi.org/10.1007/BF01443287 DOI: https://doi.org/10.1007/BF01443287

G. Mastroianni and G. Monegat, Truncated quadrature rules over (0, ?) and Nyström-type methods , SIAM J. Numer. Anal. 41, pp. 1870-1892, 2003. http://doi.org/10.1137/S0036142901391475 DOI: https://doi.org/10.1137/S0036142901391475

G. Mastroianni and G.V. Milovanovic, Interpolation Processes – Basic Theory and Applications, Springer-Verlag, Berlin – Heidelberg – New York, 2008.

G.V. Milovanovic, Construction and applications of Gaussian quadratures with non-classical and exotic weight function, Stud. Univ. Babes-Bolyai Math., 60, pp. 211-233, 2015.

G.V. Milovanovic, Generalized Gaussian quadratures for integrals with logarithmic singularity, FILOMAT (to appear). https://www.jstor.org/stable/24898684

G.V. Milovanovic and A.S. Cvetkovic, Special classes of orthogonal polynomials and corresponding quadratures of Gaussian type, Math. Balkanica, 26, pp. 169-184, 2012.

G.V. Milovanovic, T.S. Igic and D. Turnic, Generalized quadrature rules of Gaussian type for numerical evaluation of singular integrals, J. Comput. Appl. Math. 278, pp. 306-25, 2015. http://doi.org/10.1016/j.cam.2014.10.009 DOI: https://doi.org/10.1016/j.cam.2014.10.009

C. Posse, Sur les quadratures, Nouv. Ann. Math. (2) 14, pp. 49-62, 1875.

T.J. Stieltjes, Quelques recherches sur la théorie des quadratures dites mécaniques, Ann. Sci. Ec. Norm. Paris, Sér. 2, 1, pp. 409-426, 1884 DOI: https://doi.org/10.24033/asens.245

J.V. Uspensky, On the convergence of quadrature formulas related to an infinite interval, Trans. Amer. Math. Soc., 30, pp. 542-559, 1928. http://doi.org/10.1090/S0002-9947-1928-1501444-8 DOI: https://doi.org/10.1090/S0002-9947-1928-1501444-8

Zhenhua Xu and G.V. Milovanovic, Efficient method for the computation of oscillatory Bessel transform and Bessel Hilbert transform (submitted). https://doi.org/10.1016/j.cam.2016.05.031 DOI: https://doi.org/10.1016/j.cam.2016.05.031

Downloads

Additional Files

Published

2015-12-18

Issue

Section

Articles

How to Cite

Milovanović, G. V. (2015). Weighted quadrature formulas for semi-infinite range integrals. J. Numer. Anal. Approx. Theory, 44(1), 69-80. https://doi.org/10.33993/jnaat441-1063

Funding data