Sandwich theorems for radiant functions

Authors

  • Costică Mustăța Tiberiu Popoviciu Institute of Numerical Analysis

Keywords:

sandwich theorems, radiant functions, coradiant functions

Abstract

We show that between two graphs, one of a radiant function and the other  of a coradiant, both dened on a real interval containing 0, there exists at  least one line which separates the graphs. The conditions for the uniqueness of a separating linear function are also established.

References

K. Baron, J. Matkowski and K. Nikodem, A Sandwich with convexity, Mathematica Panonica, 5 (1994) no. 1, pp. 139-144.

W. Förg-Rob, K. Nicodem and Z. Pales, Separation by monotonic functions, Mathematica Panonica, 7 (1996) no. 2, pp. 191-196.

B. Fuchssteiner and W. Lusky, Convex Cones, North Holland Math. Stud., 56 (North Holland, Amsterdam, 1981).

J.A. Johnson, Banach spaces of Lipschitz functions and vector-valued Lipschitz functions, Trans. Amer. Math. Soc.,148 (1970), pp. 147-169.

E.J. McShane, Extension of range of functions, Bull. Amer. Math. Soc.,40 (1934), pp. 837-842.

C. Mustata, Norm preserving extension of starshaped Lipschitz functions, Mathematica (Cluj), 19 (42)2 (1977), pp. 183-187.

C. Mustata, Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numer, Théor. Approx., 30 (2001) no. 1, pp. 61-67.

C. Mustata, On the extensions preserving the shape of semi-Hölder function, Results. Math., 63 (2013), pp. 425-433.

K. Nikodem and S. Wasowicz, A sandwich theorem and Hyers-Ulam stability of affine functions, Aequationes Math.,49 (1995), pp. 160-164.

A.M. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic Publisher, Boston-Dordrecht London, 2000.

A.M. Rubinov and A.P. Shveidel, Radiant and star-shaped functions, Pacific Journal of Optimization, 3 (2007) no. 1, pp. 193-212.

S. Simons, The asymmetric sandwich theorem, Journal of Convex Analysis, 20 (2013) no. 1, pp. 107-124.

S. Suzuki and D. Kuroiwa, Sandwich theorem for quasiconvex functions and its applications , J. Math. Anal. Appl., 379 (2011), pp. 649-655.

A. Szaz, The infimal convolution can be used to derive extensions theorems from sandwich ones, Acta Sci. Math. (Szeged), 76 (2010), pp. 489-499.

Downloads

Published

2015-12-18

How to Cite

Mustăța, C. (2015). Sandwich theorems for radiant functions. J. Numer. Anal. Approx. Theory, 44(1), 81-90. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/2015-vol44-no1-art7

Issue

Section

Articles