Generalized Newton’s method for solving nonlinear and nondifferentiable algebraic systems

Authors

  • Nicolae Pop Technical University of Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat441-1058

Keywords:

generalized derivatives, quasi-Newton method, variational problem
Abstract views: 293

Abstract

In this paper a model based on non-smooth equations is proposed for solving a non-linear and non-differential equation obtained by discretization of a quasi-variational inequality that models the frictional contact problem. The main aim of this paper is to show that the Newton method based on the plenary hull of the Clarke generalized Jacobians (the non-smooth damped Newton method) can be implemented for solving Lipschitz non-smooth equation.

Downloads

Download data is not yet available.

References

P. Alar and A. Curnier, A generalized Newton method for contact problems with friction, J. Theor. Appl. Mech., 7(1) (1988), pp. 67-82.

P. Alar and A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution methods , Comput. Meth. Appl. Mech. Engrg., 92 (93) (1991), pp. 353-375. https://doi.org/10.1016/0045-7825(91)90022-X DOI: https://doi.org/10.1016/0045-7825(91)90022-X

M. Altman, Concerning approximate solutions of nonlinear functional equations, Bull. Acad. Polon, Sci. Ser. Math., Astronom. Phys., 5, 1957.

I.K. Argyros and S. George, Chebyshev-Kurchatov-type methods for solving equations with non-differentiable operators, Nonlinear Functional Analysis and Applications, 18, No. 3, (2013), pp. 421-432.

R.G. Barthle, Newton’s method in Banach space, Proc. AMS. 6 (1955), pp. 827-831. https://doi.org/10.1090/S0002-9939-1955-0071730-1 DOI: https://doi.org/10.1090/S0002-9939-1955-0071730-1

F.H. Clarke, Optimization and nonsmooth analysis, Wiley and Sons, 1983.

L.V. Kantorovici and G.P. Akilov, Analiza functionala, Ed. Stiintifica si Enciclopedica, 1986. (in Romanian)

L.V. Kantorovich, Metoda Newton dlea functionalnîh uravnenii, D. A. N., C.C.C.R., 1948. (in Russian)

A. Klarbring, Contact problems in linear elasticity, Linköping Studies in Science and Technology, Disertation No. 133, Linköping University, 1985.

J.S. Pang, Newton’s method for B-diferentiable equations, Mathematics of Operations Research, 15 (2) (1980). https://doi.org/10.1287/moor.15.2.311 DOI: https://doi.org/10.1287/moor.15.2.311

I. Pavaloiu, Aitken-Steffensen-type methods for nonsmooth functions (I), Rev. Anal. Numér. Théor. Approx., 31 (2002), no. 1, pp. 111-116. https://ictp.acad.ro/jnaat/journal/article/view/2002-vol31-no1-art12

I. Pavaloiu, Aitken-Steffensen-type methods for nonsmooth functions (II) , Rev. Anal. Numér. Théor. Approx., 31 (2002), no. 2, pp. 191-196. https://ictp.acad.ro/jnaat/journal/article/view/2002-vol31-no2-art10

T. Petrila and C.I. Gheorghiu, Metode element finit si aplicatii, Editura Academiei, 1987. (in Romanian)

E. Picard, Traité d’analyse, tome 2, 1883. (in French)

N.A. Pop, A generalized concept of a differentiability in Newton’s method for contact problems, Bul. St. Univ. Baia Mare, ser. B, Mat.-Inf., 16 (2000), pp. 307-314.

N. Pop, An algorithm for solving nonsmooth variational inequalities arising in frictional quasistatic contact problems, Carpathian J. Math., 24 (2008) no. 2, 110-119.

L. Qi and J. Sun, A nonsmooth version of Newton’s method, Mathematical Programming, 58 (1993), 353-367. https://doi.org/10.1007/BF01581275 DOI: https://doi.org/10.1007/BF01581275

S.M. Robinson, Generalized equations and their solutions, Part.1, Basic Theory, Math. Programming Study, 10, 1979. https://doi.org/10.1007/BFb0120850 DOI: https://doi.org/10.1007/BFb0120850

S.M. Robinson, Strongly regular generalized equations, Math. Oper. Res., 5, 1980. https://doi.org/10.1287/moor.5.1.43 DOI: https://doi.org/10.1287/moor.5.1.43

S. Robinson, Local structure of fiable sets in nonlinear programming, Part.3, Stability and Sensitivity, Math. Programming Study, 1987. https://doi.org/10.1007/BFb0121154 DOI: https://doi.org/10.1007/BFb0121154

A. Shapiro, On conceps of directional differentiability, Applied Mathematics and Astronomy, 1988. https://doi.org/10.1007/BF00940933 DOI: https://doi.org/10.1007/BF00940933

Downloads

Published

2015-12-18

How to Cite

Pop, N. (2015). Generalized Newton’s method for solving nonlinear and nondifferentiable algebraic systems. J. Numer. Anal. Approx. Theory, 44(1), 93–99. https://doi.org/10.33993/jnaat441-1058

Issue

Section

Articles