Second order differentiability of the intermediate-point function in Cauchy's mean-value theorem

Authors

  • Beatrix-Mihaela Pop Babeş-Bolyai University, Romania
  • Dorel Duca Babeş-Bolyai University, Romania

DOI:

https://doi.org/10.33993/jnaat441-1056

Keywords:

Cauchy theorem, intermediate point, mean-value theorem
Abstract views: 276

Abstract

If the functions f,g:IR are differentiable on the

interval IR, aI, then there exists a function c¯:II such that

[f(x)f(a)]g(1)(c¯(x))=[g(x)g(a)]f(1)(c¯(x)), for xI.

In this paper we study the differentiability of the function c¯, when
f(k)(a)g(1)(a)=f(1)(a)g(k)(a), for all k{1,...,n1}

and
f(n)(a)g(1)(a)f(1)(a)g(n)(a).

Downloads

References

D.I. Duca and O.T. Pop, Concerning the intermediate point in the mean value theorem, Mathematical Inequalities & Applications, 12 (2009), no. 3, pp. 499-512. http://doi.org/10.7153/mia-12-38 DOI: https://doi.org/10.7153/mia-12-38

D.I. Duca and O. Pop, On the intermediate point in Cauchy’s mean-value theorem, Mathematical Inequalities & Applications, 9 (2006), no. 3, pp. 375-389. http://doi.org/10.7153/mia-09-37 DOI: https://doi.org/10.7153/mia-09-37

B.-M. Pop and D.I. Duca, The derivability of the intermediate point function in Cauchy’s mean-value theorem, Didactica Mathematica, 32 (2014), pp. 87-100 (in Romanian). DOI: https://doi.org/10.33993/jnaat441-1056

T. Trif, Asymptotic behavior of intermediate point in certain mean value theorems, J. Math. Ineq., 2 (2008), pp. 151-161. http://doi.org/10.7153/jmi-02-15 DOI: https://doi.org/10.7153/jmi-02-15

Downloads

Published

2015-12-18

Issue

Section

Articles

How to Cite

Pop, B.-M., & Duca, D. (2015). Second order differentiability of the intermediate-point function in Cauchy’s mean-value theorem. J. Numer. Anal. Approx. Theory, 44(1), 100-109. https://doi.org/10.33993/jnaat441-1056