Semilocal convergence of Newton-like methods under general conditions with applications in fractional calculus

Authors

  • George A. Anastassiou University of Memphis, USA
  • Ioannis K. Argyros Cameron University, USA

DOI:

https://doi.org/10.33993/jnaat442-1055

Keywords:

generalized Banach space, Newton-like method, semilocal convergence, Riemann-Liouville fractional integral, Caputo fractional derivative
Abstract views: 257

Abstract

We present a semilocal convergence study of Newton-like methods on a generalized Banach space setting to approximate a locally unique zero of an operator. Earlier studies such as [5], [6], [7], [14] require that the operator involved is Fréchet-differentiable. In the present study we assume that the operator is only continuous. This way we extend the applicability of Newton-like methods to include fractional calculus and problems from other areas. Some applications include fractional calculus involving the Riemann-Liouville fractional integral and the Caputo fractional derivative. Fractional calculus is very important for its applications in many applied sciences.

Downloads

Download data is not yet available.

Author Biography

  • Ioannis K. Argyros, Cameron University, USA

    Full tenured Professor of Mathematics.

References

S. Amat, S. Busquier, S. Plaza, Chaotic dynamics of a third-order Newton-type method, J. Math. Anal. Appl., 366 (2010) 1, pp. 24-32, http://doi.org/10.1016/j.jmaa.2010.01.047 DOI: https://doi.org/10.1016/j.jmaa.2010.01.047

G. Anastassiou, Fractional Differentiation Inequalities, Springer, New York, 2009. DOI: https://doi.org/10.1007/978-0-387-98128-4

G.A. Anastassiou, Fractional Representation Formulae and Right Fractional Inequalities, Mathematical and Computer Modelling, 54 (2011) 11–12, pp. 3098-3115, http://doi.org/10.1016/j.mcm.2011.07.040 DOI: https://doi.org/10.1016/j.mcm.2011.07.040

G. Anastassiou, Intelligent Mathematics: Computational Analysis, Springer, Heidelberg, 2011. DOI: https://doi.org/10.1007/978-3-642-17098-0

I.K. Argyros, Newton-like methods in partial ly ordered linear spaces, Approx. Theory Appl., 9 (1993) 1, pp. 1-9, http://doi.org/10.1007/BF02836146

I.K. Argyros, Results on control ling the residuals of perturbed Newton-like methods on Banach spaces with a convergence structure, Southwest J. Pure Appl. Math.,1 (1995), pp. 32-38.

I.K. Argyros, Convergence and Applications of Newton-type iterations, Springer-Verlag Publ., New York, 2008.

K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Vol. 2004, 1st edition, Springer, New York, Heidelberg, 2010. DOI: https://doi.org/10.1007/978-3-642-14574-2_8

J.A. Ezquerro, J.M. Gutierrez, M.A. Hernandez, N. Romero, M.J. Rubio, The Newton method: From Newton to Kantorovich (Spanish), Gac. R. Soc. Mat. Esp.,13 (2010), pp. 53-76.

J.A. Ezquerro, M. A. Hernandez, Newton-type methods of high order and domains of semilocal and global convergence , Appl. Math. Comput., 214 (2009) 1, pp. 142-154, http://doi.org/10.1016/j.amc.2009.03.072 DOI: https://doi.org/10.1016/j.amc.2009.03.072

L.V. Kantorovich, G.P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, New York, 1964.

A. A. Magrenan, Different anomalies in a Jarratt family of iterative root finding methods, Appl. Math. Comput., 233 (2014), pp. 29-38, http://doi.org/10.1016/j.amc.2014.01.037 DOI: https://doi.org/10.1016/j.amc.2014.01.037

A. A. Magrenan, A new tool to study real dynamics: The convergence plane, Appl. Math. Comput., 248 (2014), pp. 215-224, http://doi.org/10.1016/j.amc.2014.09.061 DOI: https://doi.org/10.1016/j.amc.2014.09.061

P.W. Meyer, Newton’s method in generalized Banach spaces, Numer. Func. Anal. Optimiz., 9 (1987) 3-4, pp. 249-259, http://doi.org/10.1080/01630568708816234 DOI: https://doi.org/10.1080/01630568708816234

F.A. Potra, V. Ptak, Nondiscrete induction and iterative processes, Pitman Publ., London, 1984.

P.D. Proinov, New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, J. Complexity, 26 (2010), 3-42, http://doi.org/10.1016/j.jco.2009.05.001 DOI: https://doi.org/10.1016/j.jco.2009.05.001

Downloads

Published

2015-12-31

Issue

Section

Articles

How to Cite

Anastassiou, G. A., & Argyros, I. K. (2015). Semilocal convergence of Newton-like methods under general conditions with applications in fractional calculus. J. Numer. Anal. Approx. Theory, 44(2), 113-126. https://doi.org/10.33993/jnaat442-1055