Sets on which concave functions are affine and Korovkin closures

Authors

  • I. Raşa Polytechnic Institute, Cluj-Napoca, Romania
Abstract views: 160

Abstract

Not available.

Downloads

Download data is not yet available.

References

Bauer, Heinz; Leha, Gottlieb; Papadopoulou, Susanne Determination of Korovkin closures. Math. Z. 168 (1979), no. 3, pp. 263-274, MR0544594, https://doi.org/10.1007/bf01214516

Boboc, Nicu; Bucur, Gheorghe Conuri convexe de funcţii continue pe spaţii compacte. (Romanian) [Convex cones of continuous functions on compact spaces] With an English summary. Editura Academiei Republicii Socialiste România, Bucharest, 1976. 198 pp., MR0470660.

Meyer, Paul-André Probabilités et potentiel. (French) Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. XIV. Actualités Scientifiques et Industrielles, No. 1318 Hermann, Paris 1966, 320 pp., MR0205287.

Phelps, Robert R. Lectures on Choquet's theorem. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London 1966 v+130 pp., MR0193470.

Raşa, I. On some results of C. A. Micchelli. Anal. Numér. Théor. Approx. 9 (1980), no. 1, pp. 125-127, MR0617263.

Downloads

Published

1986-08-01

How to Cite

Raşa, I. (1986). Sets on which concave functions are affine and Korovkin closures. Anal. Numér. Théor. Approx., 15(2), 163–165. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1986-vol15-no2-art11

Issue

Section

Articles