Bernstein's polynomials for powers via shifting operator
Abstract
Not available.Downloads
References
Andrica, Dorin Powers by Bernstein's operators and some combinatorial properties. Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1985), pp. 5-10, Preprint, 85-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1985, MR0842199.
Chang, G.Z., Bernstein polynomials via the shifting operator. The American Mathematical Monthly, 91 (1984), nr. 10, pp. 634-638, https://doi.org/10.1080/00029890.1984.11971515
Ghelfond, A. O., Calculul cu diferenţe finite, Edit. Tehnică, Bucureşti, 1956.
He, Fu Chin(1-MIS), The powers and their Bernstein polynomials. Real Anal. Exchange 9 (1983/84), no. 2, 578-583, MR0766081, https://doi.org/10.2307/44153570
Karlin, S.; Ziegler, Z. Iteration of positive approximation operators. J. Approximation Theory 3 1970, pp. 310-339, MR0277982, https://doi.org/10.1016/0021-9045(70)90055-9
Lorentz, G. G., Bernstein Polynomials, University of toronto Press, Toronto 1956.
Pólya, G.; Szegő, G. Problems and theorems in analysis. Vol. I: Series, integral calculus, theory of functions. Translated from the German by D. Aeppli Die Grundlehren der mathematischen Wissenschaften, Band 193. Springer-Verlag, New York-Berlin, 1972. xix+389 pp., MR0344042.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.