Numerical solution of singularly perturbed boundary-value problems using adaptive spline functions approximation
Abstract
Not available.Downloads
References
Berger, Alan E.; Solomon, Jay M.; Ciment, Melvyn; Leventhal, Stephen H.; Weinberg, Bernard C. Generalized OCI schemes for boundary layer problems. Math. Comp. 35 (1980), no. 151, pp. 695-731, MR0572850, https://doi.org/10.1090/s0025-5718-1980-0572850-8
Berger, Alan E.; Solomon, Jay M.; Ciment, Melvyn An analysis of a uniformly accurate difference method for a singular perturbation problem. Math. Comp. 37 (1981), no. 155, pp. 79-94, MR0616361, https://doi.org/10.1090/s0025-5718-1981-0616361-0
Boglaev, I. P., A variational difference scheme for a boundary value problem with a small parameter multiplying the highest derivative. (Russian) Zh. Vychisl. Mat. i Mat. Fiz. 21 (1981), no. 4, 887-896, 1069, MR0630072.
Chin, R. C. Y.; Krasny, R. A hybrid asymptotic-finite element method for stiff two-point boundary value problems. SIAM J. Sci. Statist. Comput. 4 (1983), no. 2, pp. 229-243, MR0697177, https://doi.org/10.1137/0904018
Doolan, E. P.; Miller, J. J. H.; Schilders, W. H. A. Uniform numerical methods for problems with initial and boundary layers. Boole Press, Dún Laoghaire, 1980. xv+324 pp. ISBN: 0-906783-02-X, MR0610605.
Emel'janov, K. V. A difference scheme for an ordinary differential equation with a small parameter. (Russian) Zh. Vychisl. Mat. i Mat. Fiz. 18 (1978), no. 5, pp. 1146-1153, 1355, MR0515356.
Flaherty, Joseph E.; Mathon, William Collocation with polynomial and tension splines for singularly-perturbed boundary value problems. SIAM J. Sci. Statist. Comput. 1 (1980), no. 2, pp. 260-289, MR0594760, https://doi.org/10.1137/0901018
de Groen, P. P. N.; Hemker, P. W. Error bounds for exponentially fitted Galerkin methods applied to stiff two-point boundary value problems. Numerical analysis of singular perturbation problems (Proc. Conf., Math. Inst., Catholic Univ., Nijmegen, 1978), pp. 217-249, Academic Press, London-New York, 1979, MR0556520.
Il'in, A. M. A difference scheme for a differential equation with a small parameter multiplying the highest derivative. (Russian) Mat. Zametki 6 1969, pp. 237-248, MR0260195.
Il'in, V. P. Spline solutions of ordinary differential equations. (Russian) Zh. Vychisl. Mat. i Mat. Fiz. 18 (1978), no. 3, pp. 620-627, 811, MR0502369.
Jain, M. K.; Aziz, Tariq Numerical solution of stiff and convection-diffusion equations using adaptive spline function approximation. Appl. Math. Modelling 7 (1983), no. 1, pp. 57-62, MR0699824, https://doi.org/10.1016/0307-904x(83)90163-4
Kellogg, R. Bruce; Tsan, Alice Analysis of some difference approximations for a singular perturbation problem without turning points. Math. Comp. 32 (1978), no. 144, pp. 1025-1039, MR0483484, https://doi.org/10.1090/s0025-5718-1978-0483484-9
Lorenz, Jens Stability and consistency analysis of difference methods for singular perturbation problems. Analytical and numerical approaches to asymptotic problems in analysis (Proc. Conf., Univ. Nijmegen, Nijmegen, 1980), pp. 141-156, North-Holland Math. Stud., 47, North-Holland, Amsterdam-New York, 1981, MR0605505, https://doi.org/10.1016/s0304-0208(08)71107-1
Riordan, E.O., Singularly Perturbed Finite Element Methods, Numer. Math. 44 (1984), pp. 425-434, https://doi.org/10.1007/bf01405573
Surla, Katarina Accuracy increase for some spline solutions of two-point boundary value problems. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 14 (1984), no. 1, pp. 51-61, MR0786811.
Surla, K. A uniformly convergent spline difference scheme for a singular perturbation problem. Z. Angew. Math. Mech. 66 (1986), no. 5, pp. 328-329, MR0849981.
Zavyalov, Yu. S., Kvasov, B. I., Miroshnigenko, V. L. cyr Metody splaĭn-funktsiĭ. (Russian) [Methods of spline-functions] "Nauka", Moscow, 1980. 352 pp. (errata insert). 65-01 (65D07), MR0614595.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.