On some procedures for solving fractional max-min problems
Abstract
Not available.Downloads
References
Bazaraa, Mokhtar S., Shetty, C. M., Nonlinear programming. Theory and algorithms. John Wiley & Sons, New York-Chichester-Brisbane, 1979. xiv+560 pp. ISBN: 0-471-78610-1, MR0533477.
Belenkiĭ, A. S,. Minimax planning problems with linear constraints and methods of their solution. (Russian) Automat. Remote Control 1981, no. 10, 157-170, MR0705150.
Berge, Claude Espaces topologiques: Fonctions multivoques. (French) Collection Universitaire de Mathématiques, Vol. III Dunod, Paris 1959 xi+272 pp., MR0105663.
Bitran, Gabriel R., Magnanti, Thomas L., Duality and sensitivity analysis for fractional programs. Operations Res. 24 (1976), no. 4, 675-699, MR0469280, https://doi.org/10.1287/opre.24.4.675
Charnes, A.; Cooper, W. W., Programming with linear fractional functionals. Naval Res. Logist. Quart. 9 1962 181-186, MR0152370, https://doi.org/10.1002/nav.3800090303
Cook, W. D., Kirby, M. J. L., Mehndiratta, S. L. A linear fractional max-min problem. Operations Res. 23 (1975), no. 3, 511-521, MR0459631, https://doi.org/10.1287/opre.23.3.511
Dinkelbach, Werner, On nonlinear fractional programming. Management Sci. 13 1967 492-498, MR0242488, https://doi.org/10.1287/mnsc.13.7.492
Mond, B.; Craven, B. D. Nonlinear fractional programming. Bull. Austral. Math. Soc. 12 (1975), no. 3, 391-397, MR0373627, https://doi.org/10.1017/s0004972700024047
Owen, G., Game Theory, W.B., Saunders Company, Philadelphia, 1963.
Peteanu, V., Ţigan, Ş., On some discrete fractional max-min problems. Application to max-min problems in graphs. Anal. Numér. Théor. Approx. 13 (1984), no. 2, 167-173, MR0797979.
Schaible, S., Nonlinear fractional programming. Sechste Oberwolfach-Tagung über Operations Research (1973), Teil II, pp. 109-115. Operations Research Verfahren, Band XIX, Hain, Meisenheim am Glan, 1974, MR0444037.
Schaible, Siegfried, Fractional programming with several ratios. IX symposium on operations research. Part I. Sections 1-4 (Osnabrück, 1984), 77-83, Methods Oper. Res., 49, Athenäum/Hain/Hanstein, Königstein, 1985, MR0816952.
Stancu-Minasian, I. M.; Ţigan, Şt,. The minimum risk approach to max-min bilinear programming. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 31 (1985), no. 2, 205-209, MR0858062.
Tigan, S., On a method for fractional optimization problems. Applicaiton to stochastic optimization problems, Proc. of the Computer Science Conference, Székesfehérvar, Hungary (1973), pp. 351-355.
Ţigan, Ştefan, A parametrical method for max-min nonlinear fractional problems. Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1983), 175-184, Preprint, 83-2, Univ. "Babeş-Bolyai", Cluj-Napoca, 1983, MR0750517.
Ţigan, Ştefan, Sur une méthode pour la résolution d'un problème d'optimisation fractionnaire par segments. (French) Rev. Anal. Numér. Théor. Approx. 4 (1975), no. 1, 87-97, MR0680980.
Ţigan, Ştefan, On the max-min nonlinear fractional problem. Anal. Numér. Théor. Approx. 9 (1980), no. 2, 283-288 (1981), MR0651784.
Ţigan, Ştefan, Sur quelques propriétés de stabilité concernant les problèmes d'optimisation avec contraintes. (French) Anal. Numér. Théor. Approx. 6 (1977), no. 2, 203-225, MR0680261.
Ţigan, Şt., Stancu-Minasian, I. M., The stochastic max-min problem. Contributions to operations research and mathematical economics, Vol. I, 119-126, Methods Oper. Res., 51, Athenäum/Hain/Hanstein, Königstein, 1984, MR0774415.
Ţigan, Ştefan, On some nonlinear knapsack problems. Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1984), 203-208, Preprint, 84-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1984, MR0788748.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.