On the degree of approximation by modified Szasz operator

Authors

  • S. M. Mazhar Kuwait University, Kuwait
Abstract views: 169

Abstract

Not available.

Downloads

Download data is not yet available.

References

Beckenbach, E.E. , Bellman, R., Inequalities, Springer-Verlag, New York, 1971.

Butzer, P. L. On the extensions of Bernstein polynomials to the infinite interval. Proc. Amer. Math. Soc. 5, (1954), pp. 547-553, MR0063483, https://doi.org/10.1090/s0002-9939-1954-0063483-7

Coatmelec, Chr., Quelques propriétés d'une famille d'opérateurs positifs sur des espaces de fonctions réelles définies presque partout sur [0,+∞[. (French) Approximation theory and applications (Proc. Workshop, Technion-Israel Inst. Tech., Haifa, 1980), pp. 89-111, Academic Press, New York-London, 1981, MR0615404.

DeVore, Ronald A. The approximation of continuous functions by positive linear operators. Lecture Notes in Mathematics, Vol. 293. Springer-Verlag, Berlin-New York, 1972. viii+289 pp., MR0420083, https://doi.org/10.1007/bfb0059493

Derriennic, Marie Madeleine Sur l'approximation de fonctions intégrables sur [0,1] par des polynômes de Bernstein modifiés. (French) J. Approx. Theory 31 (1981), no. 4, pp. 325-343, MR0628516, https://doi.org/10.1016/0021-9045(81)90101-5

Durrmeyer, J.L., Une formule d'inversion de la transformée de Laplace: Application à la théorie des moments. Thèse de 3e cycle, Faculté des Sciences de l'Université de Paris, 1967.

Mazhar, S. M.; Totik, V. Approximation by modified Szász operators. Acta Sci. Math. (Szeged) 49 (1985), no. 1-4, pp. 257-269, MR0839941.

Singh, Suresh Prasad On the degree of approximation by Szász operators. Bull. Austral. Math. Soc. 24 (1981), no. 2, pp. 221-225, MR0642241, https://doi.org/10.1017/s0004972700007590

Stancu, D. D. Use of probabilistic methods in the theory of uniform approximation of continuous functions. Rev. Roumaine Math. Pures Appl. 14(1969), pp. 673-691, MR0247338.

Szasz, Otto Generalization of S. Bernstein's polynomials to the infinite interval. J. Research Nat. Bur. Standards 45, (1950), pp. 239-245, MR0045863, https://doi.org/10.6028/jres.045.024

Varshney, Om P.; Singh, Suresh P. On degree of approximation by positive linear operators. Rend. Mat. (7) 2 (1982), no. 1, pp. 219-225, MR0663726.

Downloads

Published

1988-08-01

Issue

Section

Articles

How to Cite

Mazhar, S. M. (1988). On the degree of approximation by modified Szasz operator. Anal. Numér. Théor. Approx., 17(2), 147-152. https://ictp.acad.ro/jnaat/journal/article/view/1988-vol17-no2-art7