On the degree of approximation by modified Szasz operator
Abstract
Not available.Downloads
References
Beckenbach, E.E. , Bellman, R., Inequalities, Springer-Verlag, New York, 1971.
Butzer, P. L. On the extensions of Bernstein polynomials to the infinite interval. Proc. Amer. Math. Soc. 5, (1954), pp. 547-553, MR0063483, https://doi.org/10.1090/s0002-9939-1954-0063483-7
Coatmelec, Chr., Quelques propriétés d'une famille d'opérateurs positifs sur des espaces de fonctions réelles définies presque partout sur [0,+∞[. (French) Approximation theory and applications (Proc. Workshop, Technion-Israel Inst. Tech., Haifa, 1980), pp. 89-111, Academic Press, New York-London, 1981, MR0615404.
DeVore, Ronald A. The approximation of continuous functions by positive linear operators. Lecture Notes in Mathematics, Vol. 293. Springer-Verlag, Berlin-New York, 1972. viii+289 pp., MR0420083, https://doi.org/10.1007/bfb0059493
Derriennic, Marie Madeleine Sur l'approximation de fonctions intégrables sur [0,1] par des polynômes de Bernstein modifiés. (French) J. Approx. Theory 31 (1981), no. 4, pp. 325-343, MR0628516, https://doi.org/10.1016/0021-9045(81)90101-5
Durrmeyer, J.L., Une formule d'inversion de la transformée de Laplace: Application à la théorie des moments. Thèse de 3e cycle, Faculté des Sciences de l'Université de Paris, 1967.
Mazhar, S. M.; Totik, V. Approximation by modified Szász operators. Acta Sci. Math. (Szeged) 49 (1985), no. 1-4, pp. 257-269, MR0839941.
Singh, Suresh Prasad On the degree of approximation by Szász operators. Bull. Austral. Math. Soc. 24 (1981), no. 2, pp. 221-225, MR0642241, https://doi.org/10.1017/s0004972700007590
Stancu, D. D. Use of probabilistic methods in the theory of uniform approximation of continuous functions. Rev. Roumaine Math. Pures Appl. 14(1969), pp. 673-691, MR0247338.
Szasz, Otto Generalization of S. Bernstein's polynomials to the infinite interval. J. Research Nat. Bur. Standards 45, (1950), pp. 239-245, MR0045863, https://doi.org/10.6028/jres.045.024
Varshney, Om P.; Singh, Suresh P. On degree of approximation by positive linear operators. Rend. Mat. (7) 2 (1982), no. 1, pp. 219-225, MR0663726.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.