Approximation by positive operators in the space \(C^{(p)}([a,b])\)
Abstract
Not available.
Downloads
References
Francesco Altomare, Positive linear forms and their determining subspaces. Ann. Mat. Pura Appl. (4) 154 (1989), 243-258,MR1043074, https://doi.org/10.1007/bf01790351
F. Altomare, Approximation of finitely defined operators in function spaces. Note Mat. 7 (1987), no. 2, 211-229 (1988), MR1016112.
Heinz Bauer, Gottlieb Leha, Susanne Papadopoulou, Determination of Korovkin closures. Math. Z. 168 (1979), no. 3, 263-274, MR0544594, https://doi.org/10.1007/bf01214516
H. Berens, G. G. Lorentz, Geometric theory of Korovkin sets. J. Approximation Theory 15 (1975), no. 3, 161-189, MR0390599, https://doi.org/10.1016/0021-9045(75)90100-8
T. K. Boehme, A. M. Bruckner, Functions with convex means. Pacific J. Math. 14 1964 1137-1149, MR0174673, https://doi.org/10.2140/pjm.1964.14.1137
Bruno Brosowski, A Korovkin-type theorem for differentiable functions. Approximation theory, III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), pp. 255-260, Academic Press, New York-London, 1980, MR0602724.
Campiti, M. Determining subspaces for continuous positive discrete linear forms, to appear in Ricerche di Matematica, 1989.
H. Esser, On pointwise convergence estimates for positive linear operators on C[a,b]. Nederl. Akad. Wetensch. Proc. Ser. A 79-Indag. Math. 38 (1976), no. 3, 189-194, MR0404941.
Gonska, H. H. Quantitative Aussagen zur Approximation durch positive lineare Operatoren, Disseration, Universität Duisburg, 1979 (in German).
Hans-Bernd Knoop, Peter Pottinger, Ein Satz vom Korovkin-Typ für Ck-Räume. (German) Math. Z. 148 (1976), no. 1, 23-32, MR0415168, https://doi.org/10.1007/bf01187866
G.I. Kudrjavcev, The convergence of sequences of linear operators to derivatives. (Russian) Proceedings of the Central Regional Union of Mathematical Departments, No. 1: Functional Analysis and Function Theory (Russian), pp. 122-136. Kalinin. Gos. Ped. Inst., Kalinin, 1970, MR0291699.
C. A. Micchelli, Convergence of positive linear operators on C(X). Collection of articles dedicated to G. G. Lorentz on the occasion of his sixty-fifth birthday, III. J. Approximation Theory 13 (1975), 305-315 MR0382937, https://doi.org/10.1016/0021-9045(75)90040-4
R. M. Min'kova, The congruence of the derivatives of linear operators. (Russian) C. R. Acad. Bulgare Sci. 23 1970, 627-629, MR0282117.
C. Mocanu, Monotony of weight-means of higher order. Anal. Numér. Théor. Approx. 11 (1982), no. 1-2, 115-127,MR0692477.
Mocanu, C., Măsuri relativ invariante. Operatori de mediere, Teză de doctorat, Univ. Cluj-Napoca, 1982 (in Romanian).
M. Nicolescu, Ciprian Foiaş, Sur les moyennes généralisées successives d'une fonction. (French) Mathematica (Cluj) 4 (27) 1962 107-121, MR0155987.
Pottinger, P., Zur linearen Approximation im Raum Ck(I), Habilitationsschrift, Gesamthochschule Duisburg, 1976.
I. Raşa, Sur les fonctionnelles de la forme simple au sens de T. Popoviciu. (French) [On the functionals of simple form in the sense of T. Popoviciu] Anal. Numér. Théor. Approx. 9 (1980), no. 2, 261-268 (1981),MR0651782.
Helmut H. Schaefer, Banach lattices and positive operators. Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg, 1974. xi+376 pp, MR0423039.
BI. Sendov, V. Popov, The convergence of the derivatives of positive linear operators. (Russian) C. R. Acad. Bulgare Sci. 22 1969 507-509, MR0251415.
Stadler, S., Über 1-positive operatoren, Linear Operators and Approximation II (Proc. Conf. Oberwolfach Math. res. Inst. Oberwolfach, 1974), 00.391-403, Internat. Ser. Numer. Math. Vol.25, Birkhäuser, Basel, 1974.
A. A. Vasil'čenko, Korovkin systems in some function spaces. (Russian) Studies in functional analysis (Russian), pp. 6-14, i, Ural. Gos. Univ., Sverdlovsk, 1978, MR0559714.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.